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Une nouvelle  mbthode  d’ktude  theorique 
des  reseaux  de  diffraction et son  application  numkrique 

RESUME : Nous presentons  un  nouveau  formalisme  de  la  dif- 
fraction  par  un  reseau,  tres  different  de  ceux  actuellement  utilises. 
I1 se caracterise  par  I’utilisation  d’un  systeme d e  coordonnees de 
translation qui  permet,  apres  emploi  des  equations  de  Maxwell 
en  coordonnees  curvilignes,  d’aboutir a un  systeme  d’equations 
differentielles a coefficients  constants.  L’application  numerique 
est  fondee  sur le calcul  matriciel  elementaire.  Le  programme  est 
teste a l’aide de criteres  numeriques  et  par  comparaison  des  resultats 
avec  ceux issus de  la  methode  integrale. 

INTRODUCTION 

In  the  last fifteen years, the  theoretical  problem 
of  diffraction of light by gratings  has been investigated 
by many  authors. A detailed review of  this field has 
been recently published [l]. Roughly,  the  rigorous 
theories which have been implemented and verified 
on a  computer  can  be classified in two categories : 
the  integral and the differential methods. The integral 
approach  leads  one  to  the resolution of  an integral 
equation  (and sometimes of coupled integral 
equations).  On  the  other  hand,  the differential forma- 
lism requires  the  resolution of an infinite system of 
coupled differential equations. Owing to  the fact 
that the coefficients of the differential equations 

SUMMARY : We are  going  to  describe  a  new  formalism  for  the 
study  of  diffraction  by  a  grating,  quite  different  from  those  used 
nowadays.  It is characterized  by  a translation  coordinate  system 
which  allows us to  write  a  system  of  linear  partial  differential 
equations  with  constant  coefficients,  after  using  the  Maxwell 
equations  in  curvilinear  coordinates.  The  numerical  application 
is based on  elementary  matrix  calculus.  The  program  has been 
tested  through  classical  numerical  criteria  and  also  by  compari- 
sons  with  results given by  the  integral  method. 

are  constant,  our theory,  although being differential 
in nature, differs strongly from  the  previous  ones. 

This  feature  has  a  fundamental  importance in 
the  numerical  application of the  theory, because it 
makes  it possible to  be  content with classical cal- 
culations which result in the finding of eigenvalues 
and eigenvectors of  a  matrix whose coefficients are 
known in a closed form.  Another  advantage  of  the 
analytic  form of our differential equations is the 
possibility to achieve easily a  perturbation  treatment 
on  the groove depth of the grating.  This  has allowed 
us to  obtain simple formulae  able  to express the 
efficiencies of shallow gratings in terms  of  grating 
parameters,  and in the resonance domain.  This  last 
study will  be presented in a  future  paper. 
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The  basic  characteristic  of our  method is the use 
of  a new  system of  coordinate axes  which maps  the 
grating  surface  onto  a  plane.  For  numerical  reasons, 
we have  been led to  separate  the field associated  with 
the  evanescent  waves  from  that  associated with the 
ingoing and oufgoing waves. Only  the first part  of 
the field is expressed after  using  the new system  of 
non  orthogonal  coordinate  axes, called translutiotz 
coordinates system. T o  this  aim,  it is convenient 
to use the  covariant  form  of  the  Maxwell  equa- 
tions [2]. On the  other  hand,  the  second  part  of  the 
field is described  by  plane  waves,  even  in  the  grooves. 
This  must  not  be  confused  with  the  hypothesis of 
the  Rayleigh  expansion  method which  states  that 
the  total field can be represented by a  plane wave 
expansion.  The  theoretical  calculation results in a 
classical problem of  finding  eigenvalues and eigen- 
vectors,  which  can  be  solved  numerically.  Finally, 
the efficiencies are  obtained by  solving  a set of linear 
equations. 

The  numerical  application has been achieved for 
perfectly conducting  gratings. We will shou that O L I ~  
numerical  program is able  to  compute  the efficiencies 
of blazed or holographic  gratings. 

I. - DESCRIPTION 
OF THE PROBLEM AND  NOTATIONS 

Let us consider (jigure 1 )  a  rectangular  coordinate 
system  Oxyz and  a cylindrical  periodic  surface of 
arbitrary  shape  and  period d. Let us call  y = a(x) 
its equation.  Throughout  the  paper,  the  metal of 
the  grating, filling the region  y < a(x),  is assumed 
to be  perfectly  conducting, but  without  doubt  our 
theory  can be generalized to the  more  general case 
of finite  conductivity. In  vacuum,  an  electromagnetic 
monochromatic  plane wave strikes  the  grating  under 

V A C U U M  

M E T A L  

FIG. 1. - Reference  coordinate  system. 

the incidence 0 and with  wavevector k which lies to Oz axis)  and Hll (magnetic field parallel to Oz axis). 
in the  Oxy  plane ( I  k I = k = 2 dl, i being  the By using  a  time  dependence in exp(iot), we define 
wavelength in vacuum).  the  complex  amplitudes E,, Ey,  E,, H,,  Hp,. H,, of 

Since the  problem is unchanged  after  a  translation  the  projections  of the  electric and  magnetlc fields 
on  the Oz axis,  it  can  be considered as  a  two  dimen-  on the coordinate axis. Then in the two fundamental 
sional  one.  We  thus shall study  the  two  fundamental cases  of polarization,  the incident field with unit 
cases of  polarization called Ell (electric field parallel  amplitude is given by : 

in Ell case : E; 
in HI,  case : ZHj = F '  = exp( - ikx sin 8 + iky cos 0) , 

with Z = a. 
can  be  described,  outside  the  grooves,  by  a  plane  wave  expansion [ l ]  : 

'l'he dlH'racted field F is the  difference  between  the total field F and the  incident field F ' .  It is well known  that it 

in Ell case : E,d 
in Hll case : ZH,d = F d  = 1 B,  exp(- ika, x - ikb, y) , 

n 
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where 

the  symbol c denoting  a  sum  from n = - E to n = + rx, 
II 

It  must  be  noted  that the more general form of the field outside  the grooves,  including  all  the possible incident 
waves, is given by : 

(4) F = F '  + F d  = 1 A, ,  exp( - ikx, x + ikp, y )  + c D, exp( - ikcr, x - ikp, y )  . 
,I 

It is worth  noting  that  the  right  hand side of  Eq. (2) 
contains  two  parts very different in nature  from a 
physical  point  of view. The first part, which we call 
asymptotic  diffracted field F o d  is equal  to  the  sum 
of  the finite number  of  terms  for which p, is real. 
This  part  represents  the  asymptotic  value  of  the field 
when y -, m .  The  sum of the  remaining  terms of 
the series defines the evanescent  diffracted field F e d ,  
which  tends towards  zero when y + m. In  order 
to distinguish  these  two fields, we define U ,  the set 
of values  of n for which p, is real.  When n E U ,  1 x ,  j 
is less than  one  and defining Q, by x ,  = sin e,,, allows 
us  to derive  from  (3)  the classical formula  of  gratings : 

sin Q, = sin Q + niid . 

Furthermore, if n E U ,  we can define the efficiency G, 
in the  order n, as  the energy diffracted in the  order n 
over  the  incident energy ratio. Bearing in mind  that 
the incident wave has a unit  amplitude, it yields : 

( 5 )  G ,  = B, E,, COS d,/cos Q . 
In practice,  for  opticists,  the  problem reduces to  the 
determination of these efficiencies. 

11. - GENERAL FORMULATION 

To determine  the values  of the efficiencies G ,  
(for n E U )  one  must  know  the values  of the fields 
at infinity.  This needs the  resolution of a boundary 
problem ; in our case,  this condition  occurs on  the 
surface y = a(x), we thus  have  to  determine  the fields 
everywhere  above  this  surface  using the following 
conditions : 
- if y > a(x) all  the  components  of  the fields 

satisfy  a  Helmholtz  equation 
- if y = a(x) the  tangential  component of the 

electric field vanishes 
- if y -+ m the diffracted field remains  finite 

and  must  go  away  from  the  grating  (out-going wave 
condition  OWC). 

The  most  important  feature  of  our  method, consists 
in  writing  the Maxwell equations in  a coordinate 
system  such that  one of the  coordinate  surfaces 
is nothing else than  the  grating  surface. We have 
chosen the  most  simple of these systems which we 
call translation coordinate system. In  this new system, 

n 

the  coordinates x and z are  unchanged ; on  the  other 
hand, y is replaced by U : 

( 6 )  U = y - a(x) . 
For  the  sake  of simplicity, we shall not describe 

here  the  tensorial  calculus which enables  us  to  know 
the fields equations in this new system (one  can find 
its summary in annex  1).  It  allows  us to derive  the 
equation of propagation  for  the  covariant  component 
E, (or H,) : 

where h and ii denote respectively daldx  and  d2aldx2. 
Because of  the presence of h', in (7), difficulties 

occur  when  the  surface of the  grating  contains edges. 
This is the  case for ruled  gratings. As we shall see 
later on, one  can get over  this difficulty ; however, 
for  the  time  being, we suppose  that h is continuous. 

The  boundary  condition  can be  expressed in the 
following  form : 

if u = 0, 
Vx, E, = 0 in the Ell case 

E, = 0 in  the H , !  case . 
or 

We  could solve the  problem  for  both  fundamental 
cases of polarization  but  beforehand, it is interesting 
to  note  that in the HI1 case,  the boundary  condition 
applies to the  electric  field.  We  could  look for  the 
specific equation  concerning E,, but  this would  lead 
us to  the  resolution  of  two different  equations in this 
particular  case.  We  have  overcome  this difficulty 
by writing  a  system  of  two  partial  differential  equations 
of the first order in U, valid for  the two  polarizations. 
To  this  aim, we introduce  a new function G ,  such 
that : 

(8) { F = E, and G = Z H ,  in El, case 
F = Z H ,  and G =  -E ,  in H , ,  case . 

Using  these new notations,  one gets the following 
equations : 

(9) 
d F -  - i  h l?F 
au l + h2 1 + i2 l?x 
-" kG +--, 
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the  boundary  conditions  being 
u = O b y :  

(11) F(x, U = 0) = E, = 0 

(12) G(x, U = 0) = - E, = 0 

We notice that  the function 
in the  two  following  functions 

now expressed  for 

in Ell case 

in HI1 case . 

a(x )  appears only 

1 c ( x )  = - and e (x )  = - . h 
1 + h2 1 + h2 

These  two  periodic  functions  can  be  developed 
in Fourier series : 

(13) c(x) = 1 c p  exp(- i 2 npxld) 

(14) e(x)  = C ep  exp( - i 2 n p x / d )  . 

P 

P 

The  theorem  of  Floquet-Bloch  leads us to  look  for 
a solution  of  the  form : 

(1 5 )  F = 1 F,&) exp(- iksr, x) 

(16) G = 1 G,@) exp( - ikcl, x) 

m 

m 

Introducing  the  right  hand  member  of (15) and (16) 
in (9) and (lo), we derive an infinite  set of differential 
equations  of  the first order with constant coeffi- 
cients : 

6, being  the Kronecker  symbol. 
+he  unknowns  are  the  double  set  of  functions F, 

and G,. In  order  to solve  these equations, we use  the 
classical method  where F,(u) and G,(u) are deve- 
loped  in  series of elementary  exponential  solutions : 

cc 

(1 7)  F,@) = 1 F,, exp( - ikr, U) 
fl= 1 

In  order  to simplify (17) and (18), it is  convenient 
to define  the infinite  vectors f ( u ) ,  g(u), f , ,  and g, 
having  respectively for  components  the  Fourier 

coefficients F,@), G,(u), F,, and G,,, in such  a way 
that : 

111. - RESOLUTION 

We  have  now  to  determine  the vectors f and g. 
T o  this  aim, we first must  ensure  that  the expressions 
of F,@) and G,(u) given by (17) and (18) satisfy (9') 

and (10'). Denoting by the  symbol (::) the  infinite 

generalized  vector  whose components  are successively 
those  off,  and  those  of gn, it yields : 

where f:) is the  n-th eigenvector,  associated to  the 

eigenva ue r,, of a  generalized matrix M which is 
obtained by juxtaposing  four infinite matrices M , ,  
M 2 3   M 3 ,  M ,  : 

with 

M l , m , p  = up em-p M 2 , m , p  - C m - p  3 
- 

M 3 , m , p  = d m , p  - % p  & m   C m - p  9 M L , m , p  - g m  e m - p  ' 
- 

After resoluJion of (20), the  eigenvectors and 

eigenvalues (i:) and r, are  known,  the  boundary 

condition in U = 0 and  the  OWC permit to determine 
the  unknown  coefficients-C, linking  the  vector 

(Bf:) to  the eigenvector ( 3  of M .  However, it is 

first necessary to  make  same  remarks  on  the  solution 
of  Eq. (20). 

Comparing  Eqs. (4) and (17) and  taking  into 
account (6) and (15) we see easily by identification 
that  the set of r ,  (values of r,  when matrix M is infinite) 
is the  set  of + P, and - P,, the  values of r, corres- 
ponding  to the - P,, being  associated to incident 
waves. 

In the  same-manner,  one could give the  analytic 
expression off,   and g,,. T o  express the incident field 
in the xOy plane, we must  know  the index q of rq 
such  that r, = - Po : the eigenvector  which  corres- 
ponds  to  rq gives the  representation  of  the  incident 
wave : 

(21) F i ( x ,  U) = S C Frnq exp(- ikcl, x + ikr, U) , 
m 
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where  the quantity S is calculated through identifi- 
cation between (21) and (1) and by using (6). If 
we call V,' the infinite  set of the  values of p such that 
r, = + ,!?,, we can  represent the diffracted wave 
in the system Oxuz by the  equation : 

F d ( x ,  U )  = 1 c C, fmp exp(-  ikr, x - ikr, U )  . 
, E V A  m 

The diffracted field given above  obeys  the OWC. 
The  determination  of  the  unknown coefficient C, 
may be  achieved by writing the  boundary  condition 
(for U = 0) and  for  example, in E, ,  , we obtain  the 
following equation : 

(22) 1 1 C,  imp exp(-  ikr, x )  = 
, E V A  m 

= S 1 Fmq exp( - ika, x) . 
m 

Through identification between the coefficients of 
the  two  Fourier series obtained  after multiplying (22) 
by exp(ikx sin e )  we finally deduce an infinite  linear 
system : 

(23) Vm, 1 Fmp C, = sFmq . 
p E v; 

IV. - REFLEXIONS ON THE TRUNCATION 

The  numerical  resolution  on a computer  requires 
a limitation of the  values  of m and p .  If we denote 
by Vp' the set  of the 2 P + 1 values of p belonging 
to V:, and with r, of  least  modulus, we can write 
Eq. (23) under  the reduced  form  (23') : 

On  the  other  hand, it may seem advantageous  to 
use  the  analytic  solution  of  the  problem  of  the eigen- 
values and eigenvectors of (20), if we operate in 
such  a  way, we can  show  that this method is equivalent 
to  the well known Rayleigh  expansion  method, 
which  leads to a  numerical  failure.  In  particular, 
it is not able  to satisfy the  boundary  condition  on  the 
grating. 

This leads us to  the following  conclusion. The 
failure  of  the  Rayleigh  expansion  method  has been 
interpreted as a  consequence of  theoretical defects. 
Since it  does  not seem to be the case  for our theory, 
we may  think  that  our  failure lies in the choice  of the 
above  truncated  eigenvectors  and  correspondingeigen- 
values,  which are  related  to  the infinite matrix". 

We could  on  the  other  hand define r ,  and f, as 
the  eigenvalues and eigenvectors  of  the  matrix M 
truncated  to  the  order 4 P + 2, each  of  the  matrices 
MI, M 2 ,  M 3 ,  M ,  being  truncated to  order 2 P + 1. 
If this  solution is more difficult to  adopt,  one  can 
show that,  after  resolution of (23'),  the boundary 
condition  in U = 0 is perfectly  satisfied. 

So, if the  problem defined by (20) and (23) has 
mathematically  the  same  formulation  as  the Rayleigh 
expansion  method,  the  simultaneous  truncation of 
these equations  leads us to  quite different  results 

J. CHANDEZON, D. MAYSTRE, G. RAOULT 239 

from  those which would  have been obtained by trun- 
cation  of  the Rayleigh expansion.  This  remark  can 
be compared  to  the conclusion of recent  works 
on this  last  method [5]. 

Table I fully confirms  this  assumption. One can 
see that  the numerically  obtained r, are different 
from  the i- 8, given by (3') especially when  n is 
increased.  Therefore,  a new difficulty appears : if 
the r, are different from  the & p,, it  may be difficult 
to  associate these two  sets of values.  This  dramatically 
occurs in the vicinity of  the  Littrow  mounting where 
the p, are  pratically  equal two by two.  Thus, it becomes 
impossible to, associate an  order of diffraction to  an 
eigenvector f, as we did  for exemple, in (21) and  the 
calculation  cannot  then be  achieved. 

In  order  to  overcome this difficulty, we have 
modified Eq. (23) to describe  the  incident field E' 
and  the  asymptotic diffracted fields Ead by a  plane 
wave representation in the xOy plane.  This  second 
originality  of our theoretical  approach  has been 
numerically very efficient. We write F a d  everywhere 
(even inside the  grooves  of  the  grating)  as  a  finite 
set  of  plane waves : 

(24) 
Vy > a(x), F ad = c B, exp( - ika, x - ikp,, y )  . 

n o U  

This  must  not be confused  with the inexact  conside- 
rations  of  the Rayleigh expansion method, which 
suppose  that  the whole  diffracted field can be described 
by a  sum of plane waves fory > u(x).  On the  contrary, 
our  method  do  not need  any  assumption  on  the  form 
of F ed inside the grooves  of the  grating.  In fact Eq. (24) 
must be  considered as a  definition of F a d  and 

F e d  = F d  - F a d ,  

and  this is quite  correct  from  a  mathematical  point 
of  view : it is always  possible  to  consider that  an 
unknown  function is the  sum of a given function  and 
an  other  unknown  one ! When y is replaced by 
U + a(x) in (1) and (2), (23) and (25) yields : 

(25) c c C, Fmp exp( - ikr, x) + 
P E W ;  m 

+ 1 B, exp( - ika, x - i k p ,  a(x)) 

+ exp( - Ikx sin 0 + ika(x) cos B )  = 0 

where W; is the set  of  values of p belonging to V i  
and  such  that  rp  has a  negative  imaginary part diffe- 
rent  from  zero  (the associated waves thus being 
evanescent). 

If we note  that  the  total  number  of  unknowns C, 
and B, is equal to 2 P + 1 (because  there  exist as 
many values of n E Uas elements of V,' with  imaginary 
part  equal to  zero) we just need to  project (25) on 
the 2 P + 1 first  terms  of the  Fourier basis to  obtain 
2 P + 1 linear equations with  2 P + 1 unknowns. 
We then  calculate  directly the values of B, and  the 
efficiencies E ,  can be readily  deduced. 

This last method, implemented on a CDC 7600, 
is more powerful than  the  previous  one.  The value 
of P needed is generally about 10 and, in these  condi- 
tions,  the  computation  time is a  fraction  of  a  second. 

n e U  
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V. - CHECKING OF THE RESULTS 

We  have  compared  our results  with  those  obtained 
from  the  integral  method [6]. The  later  has been 
successfully tested  against  numerous  numerical criteria 
and  has  also  thoroughly been verified by experiments, 
so its  results can be considered as rigorous  with  an 
accuracy  better than 

The  comparisons  are shown in tables 1 and 2. The 
results  have been computed successively for a  sinu- 
soidal  grating (a(x)  = h cos 2 nxld)  in normal inci- 
dence with  several  values  of h, and for  a  ruled  grating 
having  perpendicular  faces)  with  some  blaze  angles b. 
Since ;(x) is not defined on  the edge  of  a  ruled  grating, 
we have  described  this  type  of profile by its  truncated 
Fourier series. We know  that  the new grating  so 
defined, which has no edges, gives practically  the 
same efficiency as  the echelete  one, as soon as the 
number  of  Fourier coefficients exceeds about 10 [7]. 

Looking  at these  tables  show,  for  the  sinusoidal 
grating, an excellent  agreement between the two 
methods.  For the  ruled  grating, the  mismatch gene- 
rally does  not exceed in relative  value.  This 

TABLE 1 

Comparison of our results with  those  obtained f rom the  integral 
method,  for  sinusoidalgrating (a(x) = h cos 2 nxld) ,  P = 9, g = 0, 
E./d = 0,436  8. 

hid 6-2 = G 1  E - ,  = E ,  E, C E, G ,  (integral 
tt E U method) 

1.5 a 0.048 8 0.385 2 0.132 1 1.000 1 0.385 1 
2 5 n 0.261  6 0.095  2 0.2864 1.000 0 0.095  2 

€ 1 1  3  '5 T 0.184  9  0.133  5  0.363  3 0.999 8  0.133  5 
4 5  R 0.172 1 0.147  8 0.360 3 1.000 1 0.147  5 

ILn 0.2442 0.127  3 0.2569 0.999  9 0.127  8 

hld E - Z = E z  E, 1 E, G ,  (integral 
n E U  method) 

1 '5 a 0.110 7 0.347  9 0.082 9 1.000 1 0.347 9 
2 5 a 0.477 3 0.000 05 0.045  3 1.000 0 0.000 05 
3 57[ 0.111 8 0.129  2 0.517  2 0.999 2 0.129  3 
4 '5  T 0.056 17 0.185  9 0.515  8 0.9999 0.185 8 

I T 0.012 99 0.264 1 0.445  8 1.000 0 0.264  3 
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precision  could be enhanced by increasing the  order 
of  the  matrix M which here is equal  to 42 (P = IO). 

One  can  also see the relevance of the  energy  balance 
criterion  which  readily gives a  good  indication  on 
the  accuracy of the results. 

VI. - NOTE ON THE CALCULATION 
OF THE EFFICIENCIES 

It is possible to give to the  diffraction by a  grating 
an interpretation in terms  of quantum mechanics. 
For a photon  impinging on  the grating  with  angle 0, 
the efficiency E ,  can be  considered as the  presence 
probability  of  the  photon  after diffraction  in the  direc- 
tion e,,, this  direction  being  the  analogue  of  an energy 
level. 

This  leads us to think  that efficiencies could  be 
calculated from  the knowledge  of  the  eigenvectors, 
following  a scheme usual in quantum mechanics  for 
the  calculation  of  the  presence  probability. In the 
first method we proposed, ( 2 3 )  allowed us to compute 
the values of  the C,,. The efficiencies can be derived 
from  these coefficients. 

This  requires us to  apply  the  Poynting  theorem 
to a well chosen  rectangular  parallelepiped in the 
xuz coordinates.  The sides of this  parallelepiped 
are parallel to  the axis,  with  length respectively 
equal  to 1 and d on Oz and O x .  Moreover,  the  top 
and  the  bottom  must be located as  both sides of  the 
xOz  plane.  After  rather  tedious  calculation, we derive 
the efficiency G,,  in the  order n : 

p being the integer  such that r p  is associated to p,,. 
This  last  expression is independent  of  the  pola- 

rization  and of the  shape  of  the  grating.  Moreover, 
as it is the  faithful  application  of Poyting's  theorem, 
it includes  the  energy  balance  criterion.  One  can 
verify that, for  any value  of P ,  the  sum  of  the effi- 
ciencies is always equal  to  one. 

One  can  also verify, which is most  surprising, 

TABLE 2 

Compar,.\on o f  o i ( i '  I . ~ ' \ I {  I \  1 1  iili / h o w  obtained f rom the integral  method,  for  ruled  gratings with perpendicular facets : P = 10, 
i d  = I. \IN / J  : I 4 

E H , ,  
G- 1 6 ,  G ,  + 6-1 

G- 1 

(integral  method) 
E-1 

(integral  method) '- GO E - ,  + G ,  

5" 0.019  8 0.020  4 0.980 4 1.000  8 0.072  8 0.073 0 0.927  6 1.000 6 
101' 0.080 0 0.087 0 0.923  4 1.000 4 0.316 7 0.313  8 0.690 I 1.003 9 
I5(' 0.170 0 0.176  8 0.843 0 1.019  8 0.645 1 0.634  6 0.373 0 1.007 6 
201' 0.280  3 0.280  9 0.720  9 1.001 8 0.864  8 0.864  7 0.136 0 1.000 7 
250 0.400  2 0.400 I 0.601  2 1.001 3 0.966  3 0.961 8 0.034  4 0.996  2 
30'j 0.507 3 0.507 I 0.491 1 0.998  2 0.978  5 0.966 1 0.021 4 0.987  5 
35" 0.585  9 0.586  7 0.413  3 1.000 0 0.902 0 0.901 7 0.098 0 0.999 7 
4OU 0.632  3 0.632 7 0.367  4 1.000 l 0.767 0 0.767 I 0.232  5 0.999 6 
45" 0.647 4 0.647 I 0.352  4 0.999 5 0.693 I 0.693 5 0.306 1 0.999  6 
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that  for  any  value  of P the very stringent  theorem of 
reciprocity [6] is always  satisfied. 

Thus, in order  to test the  accuracy  of  our  numerical 
results,  we  need  another  criterion which can,  for 
instance  be  the  convergence  of  the  results when P 
is  in creased. 

This  method  for  calculating  the efficiencies, which 
is very  elegant  from  a  theoretical  point  of view, 
is not numerically  used  because  the  direct  calculation 
of  the B,, from ( 2 5 )  is more efficient. 

CO NCL US10 N 

We have  developed  here an original  formalism 
which  allows us, by  very  classical  numerical methods, 
to solve most of  the  problems  of infinitely conducting 
gratings.  We  plan  to  extend  this  formalism  to  the 
study  of  gratings with  finite  conductivity, on which 
most  of  the  work is carried out nowadays. 

We  have been able  to  show why this  new  formalism 
is  fundamentally different  from the  previous  ones, 
and  how  the two  cases of polarization  can  be  handled 
at the  same  time. 

Another  advantage  of  this  formalism consists in 
its  analyticity  which  has led us to a  perturbation 
treatment, to obtain  simple  formulas in closed form 
giving the efficiencies of  any  grating with  shallow 
grooves.  This last work, which  could  be  valuable 
for  grating  users, will be  described in a  future  paper. 

* * *  

ANNEX 1 

THE EQUATIONS OF MAXWELL 
UNDER COVARIANT FORM 

In  curvilinear  coordinates,  and  in  the  absence 
of  true  currents  and  space  charges,  the Maxwell 
equations  can be written in the  form : 

where is the Levi Civita  indicator [ 2 ]  and where 
the indices 1, 2 ,  3 denot  the  components  of  the fields 
(depending on time) on the  three  coordinate  axes. 

The affine equations  thus  written  are called (( inva- 
riant H or better  covariant )), because  the  compo- 
nents Ei and H i  of  the  vectors E and H, and  the 
contravariant  components B' and D' of  the  pseudo- 
vectors B and D transform themselves,  when  the 
coordinates  are  changed,  according  to  the  tensorial 

laws. Thus  to a  system X'' from  a  system X', we can 
write : 

Ei8 = Ai, Ei 

Hi, = Ai, Hi 
with 

;xi ;Xi' 
Ai, = 2,  A:' = - d = det ( A i ' )  . 

z X i  ' 

In  this  formalism,  the  system  of  coordinates  takes 
place  explicitly only in the  medium  relation  ships, 
and  through  the  metric  tensor g'j. In  the case of 
vacuum, with  permittivity and permeability p0, 
we can write : 

Bi = p. Jgg" H j  D' = J i g i j  E j  
- 

with g = det ( g i J )  . 

and setting  these  relations in the  above Maxwell 
equation yields : 

Using  these  last  equations,  we  derive  the  equations 
of the  covariant  components Ei or Hi,  which are 
the  propagation  equations of these fields. 

where p. c2 = 1 .  

* * *  
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