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We present a new formalism for the diffraction of an electromagnetic plane wave by a multicoated grating. Its
basic feature lies in the use of a coordinate system that maps all the interfaces onto parallel planes. Using Max-
well's equations in this new system leads to a linear system of differential equations with constant coefficients
whose solution is obtained through the calculation of the eigenvalues and eigenvectors of a matrix in each medium.
Through classical criteria, our numerical results have been found generally to be accurate to within 1%. The seri-
ous numerical difficulties encountered by the previous differential formalism for highly conducting metallic grat-
ings completely disappear, whatever the optical region. Furthermore, our computer code provides accurate results
for metallic gratings covered by many modulated dielectric coatings or for highly modulated gratings. We give two
kinds of applications. The first concerns the use of dielectric coatings on a modulated metallic substrate to mini-
mize the absorption of energy. Conversely, the second describes the use of highly modulated metallic gratings to
increase this absorption.

1. INTRODUCTION

Nowadays, rigorous solutions of the grating diffraction
problem are well known. Schematically, they can be classified
in two types according to their use of integral or differential
methods.' This classification is still valid for multicoated
gratings, i.e., gratings covered by a certain number of dielectric
or metallic layers. However, numerical instabilities en-
countered so far in the differential methods are such that only
the integral method is able to give correct results in the visible
and infrared regions.

In this paper, we propose a differential formalism that
works in the whole domain of optics. It consists of a gener-
alization of the formalism already proposed for a perfectly
conducting uncoated grating2 to the multicoated grating. We
use Maxwell's equations in covariant form3 in a nonorthogonal
system of coordinates fitted to the grating geometry. The
originality of our differential formalism lies chiefly in the fact
that the coefficients of the infinite system of coupled differ-
ential equations are constant. This fundamental feature
enables us to reduce the numerical solution of the problem to
finding the eigenvalues and eigenvectors of a matrix in every
layer. Classical numerical tests show that the precision is of
the order of 10-3. We have been able to reproduce the pre-
vious results of Maystre et al.

4 for the improvement of the
aluminum grating efficiency obtained by depositing adequate
dielectric coatings on the metallic substrate. Precision
problems in the evaluation of the eigenvalues and eigenvectors
prevent us from achieving the computations when the total
thickness of dielectric exceeds one wavelength, or when the
number of layers exceeds eight, but these limitations could

be modified by using more-sophisticated numerical tech-
niques. This method enables one, for the first time to our
knowledge, to study a grating covered by a great number of
layers separated by modulated interfaces. This could be of
great interest for use both in the visible (gratings used at the
end of a laser cavity4' 5) and in the infrared (sampling mirrors
for high-power lasers5).

2. PRESENTATION OF THE PROBLEM AND
NOTATION

The metallic or dielectric substrate, with complex index v0,
is covered by Q dielectric or metallic layers with indices vi and
thicknesses ej (Fig. 1), the total thickness of the coating being
e = 2 Q 1 ej. The grating is illuminated in vacuum (medium
Q + 1) by a homogeneous monochromatic plane wave with
angle of incidence 0, with a wave vector k (k = Ikj = 27A),
situated in the Oxy plane, X being the wavelength in
vacuum.

The upper interface is given in the Oxyz axes by the equa-
tion y = a(x), where a(x) is periodic in x with period d =
2ir/K. So the upper limit of the jth medium (of index vj) is
given by y = a(x) + uj, where uj = -Q=j+l ej, uo thus being
equal to -e and UQ equal to 0.

We classically distinguish the two fundamental cases of
polarization, called TE or TM according to whether the
electric field or the magnetic field remains parallel to the Oz
axis. To simplify the notation, we call Fi the complex am-
plitude of the incident field, equal to Ezi (TE case) or
H2, i (o/Eo) 1 /2 (TM case), where Ez i and H.i denote the com-
plex amplitudes of the only component (parallel to Oz) of the
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Fig. 1. Presentation of the problem and notation for a total number
of layers Q = 3.

incident electric or magnetic field. We normalize this incident
field by writing

P = exp(ikx sin 0 - iky cos 0), (1)

where the time dependence exp(-iwt) is omitted. The
problem, for the two cases of polarization, is to determine the
total field F, equal to E, (TE case) or Hz (gU0/eo)'1 2 (TM case).
We define the diffracted field Fd in vacuum by Fd = F -
P.

From the fundamental laws of electromagnetism, it can be
shown that this physical problem of diffraction leads to a
boundary problem for the fields, which must satisfy'

(1)
(2)
(3)

Maxwell's equations in each homogeneous medium;
Boundary conditions on each interface;
An outgoing wave condition (OWC) when y - ±a.

The third condition means that the diffracted field must
propagate upward and remain finite when y -- and that the
total field must propagate downward and remain finite when
y - -co.

From these conditions, it can be shown that, above the
grooves, i.e., when y > max[a(x)], the diffracted field can be
represented by a plane-wave expansion1 :

Fd = L B, exp[i(x,,x + /ny)],
n

with
an = k sin 0 + nK,

where
On = (k2 -- a. 2 )"12 if n E U,

13,n = i (an 2 - h 2)1/2 if n & U,

U being the set of P integers such that I an I < k, and Zn

noting a sum from n = -a to n = +-.
It is worth noting that the right-hand side of Eq. (2) c

tains two parts that are different in nature from a phys
point of view. The first part, which we call the asympt(

(2)

Fad = L Bnexp[i(aenx + /tY)1;
ne U

so the relation in vacuum

Fd = Fad + Fed

(4)

(5)

becomes, for a(x) < y $ Max[a(x)], a definition of Fed, which,
of course, cannot be represented, in general, by a plane-wave
expansion. Equations (4) and (5), which are one of the
novelties of our formalism and which, in the following, will be
efficient from a numerical point of view, should not be con-
fused with the inexact considerations of the Rayleigh expan-
sion method,' which considers that the whole diffracted field
can be described by a plane-wave expansion.

The fundamental question for the user is to know the ef-
ficiencies an, defined for n E U as the energy diffracted in the
nth order divided by the incident energy ratios. Bearing in
mind that the incident wave has a unit amplitude, it can be
shown' that

On = BnBn* cos On/cos 0,

where the asterisk denotes the complex conjugate.

3. THEORETICAL STUDY

A. Translation Coordinate System
To be able to write in a simple manner the continuity condi-
tions of the electromagnetic field on the interfaces, it is con-
venient to use those interfaces as coordinate surfaces. The
fundamental feature of our method is to use the simplest of
these coordinate systems, which we call the translation system,
in which y is replaced by u, defined by

u = y - a(x),

the coordinates x and z being unchanged.2' 6

(3 B. Expressions of F1 and Fad in the New Coordinate
System
In the new system, the expression for the incident field be-
comes, for u > 0,

P = exp(-iku cos O)exp[-ika(x)cos O]exp(ikx sin 0).

de- That is, developing in a Fourier series the second exponential

of the right-hand member,
on-
ical
)tic

Fi = E Lm(fo)exp[i(aomx - 0u)], (6)
m

diffracted field Fad, is equal to the sum of the finite number
of terms corresponding to n e U. The other part of the dif-
fracted field, corresponding to n i U, defines the evanescent
diffracted field Fed that can be neglected when y - a. So the
asymptotic diffracted field Fad is a sum of homogeneous plane
waves whose directions of propagation can be derived from
Eq. (3) by defining the diffraction angles On = arcsin(can/
k):

sin O,, = sin C + nX/d.

We know that the plane-wave expansion described by Eq.
(2) generally cannot describe the field inside the grooves.
However, we will define the asymptotic diffracted field in
vacuum as a plane-wave expansion, even inside the grooves.
If a(x) $y $ Max[a(x)],

k

z

vacuum medium 0+1
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with

Lm(t) = 1 expJ-i[a(x)t + mKx]ldx.
d Jo

(7)

In the same way, the asymptotic diffracted field can be written
as

Fad = L L BnLm-n(-On)exp[i(amx + Onu)]. (8)
neU m

C. Stating Maxwell's Equations and the Boundary
Condition
In addition to F, we define another covariant component G
of the fields such that, in the jth medium,

F = Ez, G = kZoHX for TE polarization,
F = ZoHI, G = -kvj 2Ex for TM polarization,

with Zo = (1Lo/eo)'/ 2 .
Thanks to these notations, Maxwell's equations in covariant
form3' 6 permit us to derive a system of partial differential
equations of the first order in u, independently of the polar-
ization:

OF a' OF i
O-G, (9)
au 1 + a' 2 ax 1+a'2

uG a a+ G+ X (10)
u x + ax + a'2 G

where a' denotes the derivative of a (x) with respect to x.
Now introduction of the vector 4' whose components are two

functions,

G for TE polarization,

4 GFi = "I I for TM polarization, (11)

permits us to state easily the boundary conditions from the
elementary laws of electromagnetism: 4' must be continuous
on each interface u = uj (1 = 0, Q).

The first problem stated in Section 2 reduces in the new
coordinate system to the solution of Eqs. (9) and (10) with
continuity conditions for 4. The OWC can be derived from
Eqs. (6) and (8): when y - a, the field F(x, u) must be the
sum of the two right-hand members of these equations.

D. Solution of the Mathematical Problem
The problem stated in the previous section will be solved by
using Eqs. (9) and (10), successively, then continuity condi-
tions, then OWC's.

Using Maxwell's Equations
It is important to notice in Eqs. (9) and (10) that the function
a (x) appears only through the two periodic functions

@(x 1 = 2 ' Z(x) = a' 2 '
1 + a'2

which can be expanded in Fourier series:

@(x) = E 0, exp(ipKx),
p

D(x) = E fLJp exp(ipKx).
p

We are then led by the Floquet-Bloch theorem to look for
solutions of Eqs. (9) and (10) having the following form:

F = E Fm (u)exp(i tmx), (14)
m

G = E Gm(u)exp(iamx),
m

' = E Im(u)exp(iamx), (15)
m

Introducing the right-hand sides of Eqs. (12)-(15) in Eqs.
(9) and (10) permits us to obtain an infinite system of linear
differential equations of the first order with constant coeffi-
cients in each medium j:

-i OFm = E (apJtm-pFp + Om-pGp), (16)
au ,

-i m = E [(-a°mcp(m-p + k2Vj2timp) FP
au p

+ amS2m-pGp], (17)

where 5mp denotes the Kronecker symbol.
For the sake of simplicity, it is useful to introduce a gener-

alized vector t(u) having a double infinity of components,
which is the limit when N - - of the vector 'YN (U):

'YN = (F-N, F-N+1, ... FN, G-N, G-N+1, *. , GN)

for TE polarization, (18)

YN = [F-N... , FN, G-N/V2 (U), . . , GN/V2 (U)]
for TM polarization, (19)

where the function v(u) is a piecewise constant function, equal
to the index vj for the ordinate u. With these new notations,
Eqs. (16) and (17) yield, in each medium j,

-= [R(u)]-'T(u)R (u)I, (20)
du

where T(u) is a generalized matrix defined, like vector A, by
the limit when N - of a matrix

{A By
IC D|

[A-D being four matrices of size 2N + 1 given for m and n e
(-N, +N)] by

Amn = Ctn9 m-n,

Bmn = em-n,

Cmn = -aman Cm-n + k 2
Pij

2 (U)6mn,

Dmn = Oam~Om-n.

R is a generalized diagonal matrix

(Ri 0)

the limit for N -- of a matrix obtained by juxtaposition of
four matrices of size 2N + 1: the 0 matrix, the R1 matrix [of
component 3mn for the TE case or 6 mn/V(U) for the TM case]
and the R2 matrix [of component 3mn for the TE case or

(12) 3mnV(U) for the TM case]. (R)-' is obtained simply by in-
terchanging R2 and R1 in R.

(13) Bearing in mind the conditions of continuity of 4, it is in-
teresting to notice that Eq. (20) is valid in the sense of distri-
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butions since 4 is continuous on each interface. Also, this
equation remains valid in the more complicated case in which
v(u) is not piecewise constant but is an arbitrary function of
U.

Now since R- 1TR contained in the right-hand member of
Eq. (20) is constant in each medium j, we can expand 4(u) as
a sum of exponentials in medium j,

4(u) = E 4qiexp(irqju), (21)

where rqj are the eigenvalues of matrix R-TR (the same as
those of T) and where 4qi are proportional to the eigenvectors
R- IVq of matrix R 1 TR, Vq i being the corresponding ei-
genvectors of T,

(qj = bqj(R-1 Vqj) (22)

Finally, from Eqs. (21) and (22) we derive the form of 4(u) in
each medium j,

4 = Mjhj(u)bi, (23)

where bi is a vector of components bqj from q = 1 to q = ,
k1(u) is the diagonal matrix of components kqpj = exp(irql
U) 6qp, and M is a matrix whose columns are the vectors (R -1

Vq1 ) from q = 1 to q = c. From 4, we can deduce the fields.
The problem reduces now to the search for vectors bi in each
medium.

Using Boundary Conditions
From the continuity of 4(u) at each interface uj, we derive
Vj e (0, Q):

Mhijj(u)bi = Mi+i'#+l(uj)bi+'. (24)

From these relations, and noting that

0i(uj)[0(uj-l)-1- = #(uj - Uj-l) = O(ej),

qsQ+1(uQ) = OQ+'(0) = 1,

where 1 is the unit diagonal matrix, we finally deduce a rela-
tion between b° and bQ+I:

MQ+'bQ+l = [MQtrfQ(eq)(MQ)-j] ... [Mfii(ej)(MI)Y4 ]
* * [M101(ei)(M1)-11 MOOO(-e)bO. (25)_

For a noncoated grating (Q = 0), Eq. (25) becomes

MObW = Mlbl.

On the other hand, for a multicoated grating, it is worth noting
that in Eq. (25) each medium j is represented by the matrix
Hi = Mi~i(ej)(MJ)-Y; hence Eq. (25) can be written in the
form

Hb° = MQ+ibQ+l, (26)

with

H = HQHQ- I ... H1M%5 0(-e).

The user is generally interested in the field above the
grating, represented by the vector bQ+1. Equation (26) gives
a relation between bQ+± and b°, b° representing the field in
the substrate. Now, to determine bQ+l, we shall use the
outgoing-wave condition.

Outgoing-Wave Condition
We have to introduce new conditions on vectors b0 and bQ+I
of Eq. (26). Indeed, in the substrate, the field must satisfy
the outgoing-wave condition. This means that we must keep
in bh only the components bq0 for which rqo corresponds to
a wave whose amplitude decreases for y - -- or is propa-
gating downward. Since the u dependence of this wave is in
exp(irq0 u), we obviously must keep only rqo such that

Im(rq0 ) < 0, or Im(rq0 ) = 0 and Re(rqo) < 0. (27)

The outgoing-wave condition in vacuum could be expressed
in a similar manner. In fact, for numerical reasons, we have
been led to separate the incident and asymptotic diffracted
fields from the evanescent diffracted field, the former being
given by Eqs. (6) and (8) and the latter being the only one to
be expressed as a sum of exponentials as in Eq. (21).

Therefore Eq. (23) must be replaced for j = Q + 1 by

4 = MQ+bIQ+l(u)bQ+l + exp(-igou)l + M'4'(u)B,

where 1 is a generalized vector having a double infinity of
components, the limit when N -- of the vector

given for m e (-N, +N) by6

I'm = Lm(30o),

1 =(mfo-mK -2) Lm(fo),

B a vector of components B, (n e U) and of size P, 4'(u) a
diagonal matrix of size P and components exp(ifinuT)nr, and
M' a generalized matrix, the limit when N - of a rectan-
gular matrix

M" and M' being rectangular matrices of size (4N + 2) X P
given for m e (-N, +N) and n e U by

M"mn = L, (-On),

M"'mn = [in - (m - n)Kan/fln]Lm.-n(-fln)-

As a consequence, Eq. (26) now becomes

Hb° = MQ+lbQ+l + I + M'B. (28)

Since the term MQ+ibQ+l represents only the evanescent
diffracted field, the outgoing-wave condition in vacuum can
be easily expressed: We must keep only the components of
bQ+l corresponding to rq Q+1 such that

(29)

We prove in Section 4 that Eq. (28) enables us to calculate the
unknown vectors b, bQ+l, and B.

4. NUMERICAL APPLICATION

A. Truncation
The numerical application requires the truncation of all the
matrices and vectors contained in Eq. (28). So we replace the
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infinite vector t of Eq. (20) by the finite vector yn given by
Eqs. (18) and (19), of size 2(2N + 1). Under these conditions,
the matrix T of Eq. (20) has a size 4N + 2, and we compute in
each medium its 4N + 2 eigenvectors Vqj of size 4N + 2.
From the form of the T matrix, it can be shown 6 that the
number of values of rq 0 satisfying Eq. (27) is equal to 2N + 1.
Thus the number of components of bo will be exactly equal
to 2N + 1. In the same way, the number of rjQ+l satisfying
Im(rjQ+4 ) > 0, or Im(rjQ+l) = 0 and Re(rjQ+') > 0, is equal
to 2N + 1. Furthermore, as we will see in Section 5, the
number of rjQ+I such that Im(rjQ+ ) > 0 is equal to 2N + I
- P. So the number of components of bQ+' is equal to 2N +
1 - P. Thus, since B has P components, Eq. (28) is nothing
but a linear system of 4N + 2 equations with 4N + 2 un-
knowns, which can be solved with a classical numerical
method. This permits us to know b0 , bQ+l, and B. The
values of bi in each medium can be deduced from Eq. (24).

The computer code that we have constructed permits us to
obtain short computation times of the order of some seconds
on a CDC 7600 computer. It must be noticed that this rough
estimate must be increased for gratings having a large number
of coatings and that it corresponds to a number N close to 10
that has been generally adopted for the results described in
Section 5.

B. Remarks
By identification of the u dependence in Eqs. (8) and (21) it
turns out that, when N -- a) P values rq Q+ 'must tend toward
the P values of fln corresponding to n e U. More generally,
it is easy to see that, when N -a , a finite number 4N' + 2
values of rq Q+1 (P < N' < N) tend toward the O3n and 3B-n
(-N' < n < +N'). So it could seem advantageous to use the
analytic solution for N = - of the problem of the eigenvalues
and eigenvectors of T. Surprisingly, if we operate in such a
way, we can show that this method is equivalent to the well-
known Rayleigh expansion method,' which generally leads
to a numerical failure. To explain this paradoxical result, we
have to point out that, after truncation, the rqQ+l will be
different from the On and -fn, contrary to what happens in
the numerical application of the Rayleigh method. So the two
theories, which appear to be close to each other before trun-
cation, are quite different in the numerical application. The
reader will find in Table 1 the values of On and rq Q+1 obtained

Table 1. Comparison of the Values of gin (for n > 0)
and rq Q+1 Obtained for a Sinusoidal Grating of

Groove Depth h = 4 Am and Groove Spacing d = 18 Am
Illuminated under Normal Incidence with the

Wavelength X = 10 ,m, the Truncation Being Made
with N = 10

n Re(,n)/k Im(ln)/k Re(rqQ+1)/k Im(rqQ+')/k

0 1.0000000 0 1.0000000 0
1 0.83147942 0 0.83147942 0
2 0 0.48432210 0 0.48432210
3 0 1.3333333 0 1.3333333
4 0 1.9845079 0 1.9844902
5 0 2.5915342 0 2.6080262
6 0 3.1797973 0 2.8792848
7 0 3.7581188 3.1513533 0.6576725
8 0 4.3304834 -3.1513533 0.6576725
9 0 4.8989795 3.5123515 1.5417451

10 0 5.4648145 -3.5123515 1.5417451

in the case of a sinusoidal grating. However, it is possible to
carry out the calculation without separation between the two
kinds of fields. In this case, the efficiencies are computed like
the probabilities of states in quantum mechanics.2' 6

It is worth noting that the separation between evanescent
and asymptotic diffracted fields could be made in the sub-
strate, too, when this substrate is dielectric. This would
permit us to compute the efficiencies in the transmitted orders
of a dielectric grating.

5. APPLICATIONS

In this section, we intend to show that our computer code
actually extends the possibilities of theoretical predictions in
the field of diffraction gratings. To this end, we give two
examples concerning recent applications of the properties of
diffraction gratings.

A. Using Dielectric Coatings to Minimize the Absorption
of Light by Diffraction Gratings
Highly reflecting metals, such as aluminum, silver, and gold,
are traditionaly used in the construction of diffraction grat-
ings. As a consequence, the energy absorbed by these gratings
reaches 10% in the visible region and decreases in the infrared
region (about 1% at 10 Am). However, this absorption is
considerably enhanced if some Wood anomaly occurs.4

For some recent applications of gratings, this absorption
must be strongly reduced. For instance, it is the case for
gratings used as beam-sampling mirrors for high-power la-
sers.4 These gratings generally operate at 10.6 gm and must
absorb less than about 0.1% of the energy contained in the
laser beam in order to avoid destruction. We know that this
goal may be reached by using adequate X/4 dielectric coatings
deposited on the metallic substrate. This property is well
known for metallic mirrors but unfortunately does not always
hold for gratings. Indeed, the dielectric coatings multiply the
number of Wood anomalies, and therefore it is impossible to
have a priori an idea whether the multicoated grating is highly
reflecting or whether it is strongly absorbing. The problem
is identical for gratings used at the end of the cavity of tunable
lasers in the visible region,4' 5 where a reduction of absorption
can strongly enhance the performance of the laser.

At this time, the only tools that we have at hand to predict
the behavior of multicoated gratings are the rigorous computer
codes obtained from electromagnetic theories. To our
knowledge, these computer codes are few in number, and it
seems that the most powerful in the visible and infrared re-
gions has been constructed by one of the authors, at least in
the case in which all the interfaces are modulated.8 This code
has been used to perform a numerical optimization of holo-
graphic and ruled gratings coated with dielectric layers, in
collaboration with an experimental study by Jobin-Yvon.4 In
practice, numerical reasons prevented the authors from
achieving accurate computations as soon as the number of
dielectric coatings exceeded three. Nevertheless, it appeared
that a significant decrease of absorption was possible, for in-
stance by a ratio of 2 for a 3000-groove/mm holographic
grating with a sinusoidal profile, a fact qualitatively confirmed
by experiments made by Jobin-Yvon.

First, we have thoroughly compared the results from the two
computer codes when the number of dielectric coatings is
fewer than three: the relative discrepancy does not exceed
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10-2 and generally is of the order of 10-3. Similar computa-
tions made in the infrared with gratings having a groove
spacing of 18 pm illuminated with X = 10 Am have led to
similar conclusions. So, since the results obtained from the
computer code by using the integral formalism can be con-
sidered as exact8 to within 10-2, we can deduce that our new
computer code enables us to obtain accurate results in any
region of wavelength. Classical numerical tests, such as the
energy-balance criterion and the reciprocity theorem,' have
confirmed this conclusion. This is even more remarkable.
since the previous differential formalism was unable to achieve
accurate computations for metallic gratings above 0.6 ,um
because of numerical instabilities.9 Now it is tempting to
carry on the numerical study recently developed on gratings
for tunable lasers4 in order to investigate the performances
of gratings coated with more than three dielectric layers. We
have chosen to perform our calculations in case C of Table 1
of a previous study.4

The first grating, Go, is an uncoated aluminum grating
having 3000 grooves/mm with a sinusoidal profile of groove
depth h = 0.12 gm. The second one, GI, was obtained by
coating Go with a stack of two dielectrics: a firstlayer of MgF2
on the metallic substrate, with thickness 0.106 pm, and a
second layer of TiO2, with thickness 0.0602 Am. Taking into
account the indices of MgF2 (1.39) and TiO2 (2.45), it is worth
noting that the optical thicknesses of these two dielectric
coatings represent A/4 for X = 0.59 Am. Finally G2, G3, and
G4 are obtained by depositing on Go two, three, and four
identical stacks of two dielectric coatings.

Figure 2 shows the efficiency curves of these gratings in a
Littrow mount for TM polarization. The most important
conclusion is that the maximum efficiency strongly increases
with the number of dielectric stacks. This is a consequence

1.0

C

C-, 0.5 Go0

0.0
0.5 0.55 0.6 0.65

wavelength(pm)

Fig. 2. Efficiency curves in a Littrow mount of a sinusoidal alumi-
nuum grating covered by 0 (for Go), two (GI), four (G2), six (0,), or
eight (G4) stacks of X/4 dielectric layers. The dashed line corresponds
to the total efficiency (0 order and -1 order) and the solid line to the
efficiency in the -1 order.

of the decrease of the energy absorbed by the grating, which
is equal to 12, 6, 3, 1.3, and 0.7% for Go, G1, G2, G3, and G4,
respectively. Of course, the relative precision of the values
obtained for G3 and G4 is poor since the absorption has the
same order of magnitude as the precision of the computation.
Nevertheless, it is possible to state an empirical rule: De-
positing a new stack of A/4 dielectric coatings results in the
decrease of absorption by a factor of 2. It is curious to notice
that the blaze effect, i.e., the concentration of the incident
energy in the Littrow order, which practically always coincides
with the minimum of absorption, occurs for a wavelength close
to 0.56 Am. Indeed, the thicknesses of dielectric have been
chosen to produce a minimum absorption at 0.59 pAm, at least
for a mirror. It seems that this shift of the blaze wavelength
is due to the absorption peak on the right of the figure, es-
sentially for G3 and G4, where the absorption reaches 22 and
50% for A = 0.64 ,m and X = 0.63 ,m, respectively.

This phenomenon clearly shows that, because of the Wood
anomalies, the behavior of multicoated gratings cannot be
deduced from simple rules and that it is necessary to have at
hand rigorous computer codes to investigate their proper-
ties.

B. Absorption of Light by Highly Modulated Gratings
Various recent applications have brought a new interest in the
study of highly modulated gratings. One of these applications
is the use of crossed gratings as solar-selective absorbers. In
this paper, it is not our purpose to describe the characteristics
and the properties of these crossed gratings. The interested
reader can consult recent papers' 0 "'1 for a review of the
subject. Roughly, a crossed grating differs from the classical
one by the fact that it presents a periodic modulation not only
on the Ox axis but also on the Oz axis, in such a way that its
profile can be described by the function y = a (x, z), where a (x,
z) is periodic in x and z. Experimental studies' 2 have shown
that this kind of structure can be used as a solar-selective
absorber, provided that the modulation depth is very large.
A rigorous theoretical study of these structures was recently
made.1 0 Unfortunately, the complicated computer code that
has been achieved is unable, for numerical reasons, to perform
computations when the modulation depth becomes large.
However, it has been possible, from this computer code, to
state an empirical equivalence formula' 0 "'1 able to deduce the
properties of a class of crossed gratings such that a(x, z) =
al(x) + a2(z), from the properties of the two classical gratings
y = a,(x) and y = a2 (z).

A second example of the recent applications of highly
modulated gratings can be found in the use of dielectric
transmission gratings in the zero-order diffraction system for
recording color images as embossable surface-relief structures
in transparent plastic media, as proposed by Knop. (See, for
instance, a review on the subject and some theoretical calcu-
lations in Ref. 5.)

It is now important to investigate the properties of highly
modulated classical gratings. For numerical reasons, the
existing rigorous computer codes are practically unable to
achieve accurate computations as soon as the groove depth
exceeds one or two times the groove spacing. We will show
that our new computer code is suitable for higher gratings.

Figures 3 and 4 show the efficiency curves of a sinusoidal
aluminum grating having a groove spacing equal to 0.737 Am
and illuminated with a monochromatic light X = 0.59 Am with
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Fig. 3. Efficiency in Littrow configuration and for TE polarization
of an aluminum sinusoidal grating versus the groove-depth to
groove-spacing ratio hid. The dashed line represents the total effi-
ciency and the solid line the -1-order efficiency.
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Fig. 4. The same as Fig. 3 but for TM polarization.

angle of incidence 0 = 23.60. It is worth noting that only two
orders (0 and -1) are diffracted and that, with the above pa-
rameters, we are in a Littrow mounting, where the -1 order
has the same direction of propagation as the incident wave.
The curves may be compared with those published in a recent
paper,' 3 corresponding to the case of a perfectly conducting
grating. We can see that our computer code makes it possible
to investigate the properties of gratings whose groove-depth
to groove-spacing ratio is about 3. For perfectly conducting
gratings, the efficiency d-1 in the -1 order was given with
good accuracy by a simple formula, issued from a phe-
nomenological theory13 :

Fig. 5. Efficiency in a non-Littrow configuration
and for TE polarization of an aluminum grating
versus the groove-depth to groove-spacing ratio hid.
The dashed line represents the total efficiency and
the solid line the -1-order efficiency.

>
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Fig. 6. The same as Fig. 5 but for TM polariza-
tion.

6-1 = sin2 [p(h)],

where p(h) was practically a linear function of h, depending
on the polarization. This time we do not have a phe-
nomenological theory at our disposal, since the grating is not
perfectly conducting. Nevertheless, from Figs. 3 and 4, it
seems that the shape of the efficiency curves strongly depends
on the polarization. For TE polarization, the total efficiency
U can be represented practically by a straight line, and the

efficiency in the -1 order is practically a sinusoid with a de-
creasing amplitude:

&_1 = F_& sin2 [p(h)],

p(h) being nearly the same as for the perfectly conducting
grating. This conclusion no longer holds for TM polarization.
In this case, 6-1 oscillates, but the curve differs considerably
from a sinusoid. Furthermore, the total efficiency roughly
decreases with h but with oscillations having a frequency
different from that of 6-1. Another big difference between
the two polarizations lies in the importance of the absorption,
which reaches 0.65 for TM polarization and only 0.35 for TE
polarization, when the groove-depth to groove-spacing ratio
is close to 3. For both polarizations, we can notice that the
efficiency d-1 oscillates between perfect zeros and perfect
blazings (where 6 0 is equal to zero).

Figures 5 and 6 show similar curves for a non-Littrow
mount. The sinusoidal aluminum grating with groove spacing
0.333 Atm is illuminated with wavelength 0.59 ,m with an angle
of incidence of 550 in such a way that only two orders are
diffracted. In the right-hand side of the figure, the groove-
depth to groove-spacing ratio is equal to 6. For TE polar-
ization, the frequency of the oscillations is very low, and we
cannot observe the first maximum of the curve. For TM
polarization, the curve oscillates strongly, but it is worth
noting that perfect zeros and perfect blazings completely
disappear.

To our knowledge, this is the first time that a computer code
able to deal with gratings of arbitrary profile can achieve ac-
curate computations for such highly modulated gratings.

0 2 3
h/d

4 5

h/d

.11
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6. CONCLUSIONS

We have described a new differential formalism for multi-
coated diffraction gratings. It extends the domain of appli-
cation of the differential formalism to the metallic gratings
used in the visible and infrared regions, but it also permits us
to investigate, for the first time, the properties of gratings
covered with a great number of modulated layers or the be-
havior of highly modulated gratings of arbitrary shape.

By using this new computer code, we can find answers to
problems concerning the traditional use of gratings in any
region or wavelength. In addition, we can investigate the
properties of new kinds of gratings used for recent applica-
tions.
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