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Multilayer-coated diffraction gratings:
differential method of Chandezon et al. revisited
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I report significant improvements to the differential method of Chandezon et al. [J. Opt. Soc. Am. 72,
839-846 (1982)]. The R-matrix propagation algorithm is used to remove completely the previously existing
limitations on the total coating thickness and on the total number of coated layers. I analyze the symme-
try properties of the eigenvalue problem that arises in the differential formalism and use them to speed up
the numerical computation. The time needed for computing the eigensolutions of coated gratings in a coni-
cal mount is reduced to little more than what is needed for gratings in a classical mount. For gratings
with dielectric coatings or gratings with symmetrical profiles the need to invert certain matrices appearing
in the formalism is eliminated. Numerical results show that it is possible to make nearly 100% efficient
surface-relief reflection gratings in a Littrow mount by the use of dielectric materials only.

1. INTRODUCTION

In many applications, practitioners coat surface-relief
gratings with one or more dielectric layers to enhance
diffraction efficiency and, in the case of metallic gratings,
to prevent the metallic grating surface from tarnishing.
If the thicknesses of the individual coated layers are
small fractions of the grating period, the contours of the
medium interfaces tend to follow that of the periodically
corrugated initial grating surface. In this paper gratings
that consist of multiple periodically corrugated medium
interfaces are referred to as coated gratings.

Coated gratings, compared with bare (single-periodic-
interface) gratings, present certain analytical difficul-
ties that not every grating method is equipped to deal
with. For example, the classical modal method' and the
coupled-wave method,2 which rely on approximating a
smooth grating profile by a succession of lamellar grat-
ings, are inherently inefficient in dealing with coated grat-
ings. Only those methods, such as the integral method3' 4

and the extinction-theorem method,5 that explicitly take
the grating contour into account are naturally suited for
coated gratings. However, the integral method is limited
to gratings whose number of coated layers is not much
greater than 3,6 and the extinction-theorem method is
limited to gratings of shallow groove depth.7 In the early
1980's Chandezon et al.6' 8 presented a new differential
formalism for multicoated gratings that was applicable
in the entire optical region. Subsequently, the method
was generalized to conical mountings by Popov and
Mashev9 and at a later time by Elston et al.'0 Popov and
Mashev also numerically investigated the convergence
of the method"", 2 and experimentally investigated the
diffraction efficiency anomalies of multilayer-coated di-
electric gratings. 13 In this paper, following Refs. 11 and
12, the method of Chandezon et al. is referred to as the
C method.

Chandezon et al. acknowledged in their paper6 that
numerical problems prevented them "from achieving the
computations when the total thickness of dielectric ex-
ceeds one wavelength, or when the number of layers

exceeds eight." They further stated that "these limi-
tations could be modified by using more-sophisticated
numerical techniques." In the present paper I have com-
pletely removed these limitations by incorporating a nu-
merical technique that is called the R-matrix propagation
algorithm',5 into the C method. In addition, by analyz-
ing the symmetry properties of the eigenvalue problem
appearing in the C method, I have reformulated part of
the mathematical development of the C method so that
the computation time is significantly reduced, especially
for gratings in conical mountings.

2. NOTATION

A multilayer-coated grating in a conical diffraction mount,
along with the Cartesian and polar coordinate systems,
is illustrated in Fig. 1. The notation for the media and
their interfaces is shown in Fig. 2, where Q 2 0 is the
total number of coatings. For the sake of generality, it
is assumed that there are L 2 0 planar layers above the
top corrugated surface and -P 2 0 planar layers below
the bottom corrugated surface. In this paper, whenever
possible, subscripts are reserved for the physical and
mathematical quantities in the corrugated region, and
superscripts with parentheses are reserved for the quan-
tities above and below the corrugated region. In the up-
per curved-to-planar transition layer the subscript Q + 1
and the superscript (+1) are used interchangeably, and
a similar convention holds for the subscript 0 and the
superscript (-1) in the lower transition layer. The loca-
tion of a curved interface is specified by the ordinate of its
minimum, yj. The thicknesses of the layers are denoted
by

Yo - y(-l)

ej = yj yj-y

Y(+ ) - YQ

(j) fyU) _ yU-1 )
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Fig. 1. Multilayer-coated grating in a conical mount.

(4)

where, from Fig. 1, a = k(L+1) sin cos , (L+) =

k(L+1) cos cos , and k = k(L+1) sin e. Since the
grating structure is invariant in the z direction, the
z-dependent factor exp(ik~z) is shared by the fields
everywhere.

For an incident wave vector with kz 0 a reduced
incident wave vector and the modulus squared of the
reduced wave vectors in all media can be defined as
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Fig. 2. Notation for the media and medium interfaces of a
multilayer-coated grating.

(5)

(6)

k' = xc 0 _ 9(L+1)

Vj2 = k 2 - k 2

respectively. In this paper, for a given conical mount,
a classical mount is called the induced mount (by the
conical mount) if its incident wave vector has identical
x and y components to those of the conical mount. It
will be shown in Section 4 that the mathematical analy-
sis of a grating in a conical mount is intimately related
to the analysis of the same grating in the induced clas-
sical mount.

The content of this paper is quite mathematical. For
the sake of clarity, I list some of the notation below.
Additional notation will be introduced as needed.

Although the magnetic permeabilities for most optical ma-
terials are unity (the Gaussian system of units is used in
this paper), I permit them here to be different from unity
and from each other to maximize the generality of the
theory and to preserve certain symmetries between the
electric and magnetic fields in the mathematical formu-
las to be derived. The incident light is assumed to be a
monochromatic, arbitrarily polarized plane wave having
a time-dependent factor exp(-iw t).

The grating profile function a(x) 0 can be an arbitrary
periodic function of x as long as the Fourier expansions of
functions C(x) and D(x), to be defined at the end of this
section, converge. All corrugated interfaces are assumed
to have the same functional form except for their vertical
offsets. Thus the contour of the jth curved interface is
given by

y = yj + a(x), 0 j Q.
The grating groove depth and the period are denoted by
h and d, respectively.

Next I define various wave vectors. The modulus
squared of the wave vectors in all media is conventionally
given by

2 2kj2 = jl-jK ,

k( j)2 = e(i)A jU) K2 

0cj Q+ 1, (3a)

+1 c j c L + 1 or P-1 c j -1,

(3b)

where K = 2/A, A being the vacuum wavelength. For
simplicity, hereafter only the formula with subscripts or
superscripts will be given whenever the formula is valid
in both the curved and planar regions, and, unless speci-
fied otherwise, the index j runs in the ranges given in
Eq. (3a) or (3b) depending on the spatial regions under
consideration. For a given grating a conical mount is
uniquely defined by the wave vector of the incident plane
wave

N: Truncation order, i.e., the number of the Rayleigh
orders that are retained in the numerical computation.

Superscript T: Matrix transpose.
Superscript *: Matrix adjoint.
Superscript s: s = e and s = h denote the z compo-

nents of the electric- and magnetic-field vectors, re-
spectively, of the incident and diffracted Rayleigh
amplitudes. They are also used to denote, respec-
tively, the H -type and E-type eigenvalues and
eigenvectors of the quasi-Rayleigh waves (this term is
defined in Subsection 3.B).

R(s) and T: Rayleigh amplitudes for the diffracted
orders in the uppermost and lowermost media,
respectively.

I (s) and Js): Rayleigh amplitudes for the incident orders
in the uppermost and lowermost media, respectively.
In most applications j(s) = 0 for all n, and I(s) 0 only
if n = 0. However, in order to preserve the symmetry
of many formulas to be derived with respect to I(s)
and J), I postpone the above substitutions until the
numerical implementation.

U and V: Sets of integers designating the Rayleigh and
quasi-Rayleigh orders after truncation, respectively.

U(- 1 ): Set of integers designating the propagating
Rayleigh orders in medium (±1).

V(±'): Set of integers designating the upward and down-
ward decaying quasi-Rayleigh orders in medium (±1)
after truncation, respectively.

(j) K2_ (j)

r1 = ' k(j)2

(j) K
2

AUi)
T2 C z k(j)2

(j) * KkZ
73 = k(j)2;

K = 27r/d;

am = ao + mK, where m is an integer;

Re[,l3')] + Im[,63j')] 2 0;
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C(x) = 1 + 2 (x) m C exp(imKx),

Cm = d f C(x)exp(-imKx)dx; (7)

D ~ (x) = Dm exp(imKx),
1 + 2(x) m=-.

Dm = f I D(x)exp(-imKx)dx. (8)

The integrations in Eqs. (7) and (8) are over one grating
period.

3. DIFFERENTIAL METHOD OF
CHANDEZON ET AL.

The purpose of this section is to review the differen-
tial method of Chandezon et al. and thereby to lay
down the appropriate framework for its further develop-
ment in Section 4. In Subsections 3.A and 3.B all
layer-identifying subscripts are omitted. In addition,
throughout this paper I use representative vector and
matrix elements with subscripts to denote the respective
vectors and matrices.

A. Field in a Planar Layer
In a planar layer it is legitimate to write the z components
of the fields in Rayleigh expansions. Because of the in-
variance of the grating geometry with respect to z, the x
components of the fields can then be expressed in terms
of the z components. In this paper the column vector de-
fined by

F(y) = (Ezm. Hzm, . Hxm, i Exm) (9)

is called an F vector, where m E U. It can be shown that

F(y) = Wq5(y - y')W-'F(y'),

where y' is a constant, q5 is a diagonal matrix,

qf(y) = exp(+imy) a exp(+iflmy)

eD exp(-i13 my) �D exp(-ipmy),

F1 0 1 01

to 1 0 1 
W = 71/3m 73am Ti/3m T3am 

L Taam T213m T3am T2Pm I

(10)

with 1 representing the identity matrix, 0 representing
the zero matrix, and all other entries being diagonal
matrices. In Eq. (11) the symbol �D means matrix di-
rect sum.

B. Field in a Curved Layer
The ingenuity of the C method is to solve Maxwell's equa-
tions for the fields in regions bound by curved surfaces in
a curvilinear coordinate system Oxuz, where x and z are
unchanged from the Cartesian coordinates in Fig. 1 but
y is replaced by

u =y - a(x). (13)

In this curvilinear system the grating interfaces coin-
cide with the coordinate surfaces u = yj. By the use of
Maxwell's equations in the tensorial covariant form14 the
following equations can be derived9" 0 :

-=D~~x)-+-C(x) OxdE ED(x) az + -(2Hikz d)
au ax KE a )I

aOHz aOHz i (k2EX k OE"

au D(x)-xK--C(x) - iax x)I

-Hx = a [D(x)Hx] + iKeEz
Ou Ox

KU a [C(x)(ikZEx - E Z)] 
K11Lax La~~~xi

aEx = a [D(X)Ex]- iKIHz

Ou Ox

+ a [C(x)(ikzx - d z)] '
Ke x a X xi

(14a)

(14b)

(14c)

(14d)

where Ez, Hz, Ex, and H, as functions of x and u, are
the covariant components of the electric and magnetic
fields along z and x, respectively. In order to solve these
coupled equations, we expand the field amplitudes into
Fourier series:

(15)cD(x, u) = Y (Dm(u)exp(iamx),
m=-x

where 1 stands for any of the four covariant field compo-
(11) nents. Substitution of these Fourier expansions and the

expansions in Eqs. (7) and (8) into Eqs. (14) yields

- d F = MF,
i du(12)

(16)

where

Dm-n Xn

-- Cm-nan

k 2

I(k26tmn - mCm-na~n)

- Cm-nan

Dm-nan

0

1

0 --.- (k2
86mn - xmCm-n an)

If

-- 1Cm-n
1

0

0

-Cm-n
72

amDm-n T3 mCm-n

-3 amCm-n amDm-n
Tj

1 (17)

Lifeng Li



Lifeng Li

with m E U and n E U, and, in a form similar to that of
Eq. (9), the F vector in a curved medium is defined by

F(u) = (Ezm, Hzm, iHxm, Exm)* (18)

A solution of Eq. (16) corresponding to an eigenvalue Aq
of M can be written as

fq = 4q exp(iAqu)bq, (19)

where 4q is the eigenvector of M associated with
Aq, q E V, and bq is an arbitrary constant. I will call
the eigensolution (19) a quasi-Rayleigh wave (or mode).
This name is appropriate because, if Eq. (16) were solved
with N - , Aq with a finite q would be nothing but
Pm or fem with an appropriate m and fq would be the
mth term in the usual Rayleigh expansion. [However,
the exact solutions to Eq. (16) should not be used in the
numerical implementation of the C method.6 8 ] From
Eq. (19) the general solution of Eq. (16) can be written in
a form similar to that of Eq. (10):

F(u) = WO(u -u)W-'F(u'), (20)

where W is the matrix formed by juxtaposition of 4q (q E
V),

0(u) = 6pq exp(iAqu), (21)

with pq being the Kronecker symbol, and u' is an
arbitrary constant.

C. Field in the Outermost Media
Here it is assumed that L 0 and P 0, i.e., the two
semi-infinite media are bound by planar interfaces. In
terms of the Rayleigh amplitudes for the z components of
incident and diffracted waves, the F vector evaluated at
the outermost planar interfaces can be written as

F(L+1)[y(L)] = W(L+l)[f(e)' frh), n(e), jh)]T 

F(P--)[y(p)] = W(P-1)[Jne), jn(h), Tn(e) Tn(h)]T

where the W matrices are given by Eq. (12) and

7(s) = Rns) exp[i .p(L+1)y(L)]

n n n
In~s = In ) exp[- nLly()

jn(s) Jn(s) exp[i6(P- l)y(P)],

Tns) = Ts) exp[-ilnP-1)y(P)1

(22a)

(22b)
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their study was to compose the field in the semi-infinite
regions in two distinctive parts, the first part consisting
of the incident and propagating diffracted waves, both ex-
pressed as the usual Rayleigh expansions, and the second
part consisting of the quasi-Rayleigh waves that decay ex-
ponentially away from the grating. Popov and Mashev' 5

considered grating geometries that had the lower transi-
tion layer (P # 0). They expressed the field in the tran-
sition layer solely in terms of the quasi-Rayleigh waves.
In the present paper I choose to express the field in both
transition media as superpositions of the propagating
Rayleigh waves and the decaying quasi-Rayleigh waves
away from the corrugated surface and of the propagating
and growing Rayleigh waves toward the corrugated sur-
face. This approach, being a natural extension of that
of Chandezon et al., has the advantage that it treats the
transition layers in a unified way regardless of whether
the transition media are finite or semi-infinite.

By writing the field in the lower transition layer as
the superpositions as described above, one can derive an
equation that relates the F vector in the Cartesian coordi-
nate system to the F vector in the curvilinear coordinate
system:

Fo(u) = Zf-l)k0(-1)(u - y)Z(-')-1F(- 1)(y), (24)

(-1) (1where the matrices Zf and Z 1 ) are defined in
Appendix A and

,k1 1)(X1) = exp[+iG',1) exp[+i,8( 1)771 a) exp[-i,8.1 77]

@ exp[-ii,8( 1) 7] e* exp[iA(-)7q], (25)

with -q being a dummy argument, m' E U-1), and q E
V(-1 ). If P = 0, then

FO(u = YO) = zg-l)[j(e)' J), m(e?, p(h) (-l)]TFo (u = yo) = Zf(- , ~~~q (26)

where J(s) and (s) are given by Eqs. (23b), with y(P)
replaced by Yo, and b-1) = b 1) exp[iA(y1)yo].

Similarly, for the field in the upper transition layer, the
following equations can be derived:

F( l)(y) = Z(+,),(+l)(y - u)Zf FQ+l(u), (27)

marcs(+1) (+1)where the matrices Z and Zg are defined in Ap-
pendix A and

(23a)

(23b)

D. Field in the Transition Media
In the original study of Chandezon et al. it was assumed
that L = P = 0, i.e., the two semi-infinite media were
bound below and above by the top and bottom corrugated
grating surfaces, respectively. One of the novelties of

0(+-)(77) = exp[+i,+ 1
m)?7] (D exp[+iOM1

1,7] ED exp[iA(+1 ),7]

e exp[-i,8+1)77] iD exp[-if+1)71, (28)

with m' E U(+') and q E V(+l). If L = 0, then

FQ+l(u = yQ) = Zf )[e)' &h), b(+l), (e) (h)]T (29)

where fls) and (s) are given by Eqs. (23a), with y(L) re-
placed by YQ, and b(+') = b(+1 ) exp[iA+')yQ].
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E. System of Linear Equations
The ultimate task of all rigorous grating methods, includ-
ing the C method, is to construct and then solve a system
of linear equations of the form

AX = b, (30)

where A is a square matrix, b is a column vector con-
taining the incident wave, and X is a column vector rep-
resenting the unknown Rayleigh amplitudes in the two
outermost media. Although vector X is uniquely defined
once an incident wave is given and a truncation order
is chosen, matrix A and vector b may take vastly differ-
ent forms depending on the mathematical methods and
numerical algorithms that have been used in their
derivation.

Since, in the C method, the coordinate surfaces y = y(J)
and u = yj coincide with the planar and curved medium
interfaces, respectively, the Cartesian field components
E. and H. at the planar interfaces and the covariant
components E. and H. at the curved interfaces are tan-
gent to their respective medium interfaces. Thus the
field-matching conditions across all the medium interfaces
are simply the continuities of the F vectors. It then fol-
lows from the results in the previous subsections that, for
L> 2, P c -2, and Q 1,

W(L+1)[R&e), f(h), I(e), (h)]T

n X n X n Xnn

=TW(P-1)[j(.), (h), T(e), T(h)]T, (31)

with
L

T nWj),(j)[e (j',W(j)-l JZ(+1)((+1)[e(+'] 1) 1
j=2

X [i Wi'i5 (e) ,W-l ]{ZV ' '

x ji W(i)0(i)[e(i)]W(i)-1 X (32)
j=p

signs are appended from the left-hand side to the prod-
ucts. If L = P = 0 and Q 0 0, which is the case investi-
gated by Chandezon et al., then the above two equations
are replaced by

(+I [(e), (h), b(+l) 1(e), (h)]T

4. IMPROVEMENTS TO THE C METHOD

A. Application of the R-Matrix Propagation Algorithm
The numerical difficulties that Chandezon et al. ex-
perienced with gratings having a large number of coated
layers or a large total thickness were actually not caused
by the precision problems in the evaluation of the eigen-
values and the eigenvectors; they were caused by the
method that was used in the derivation of the system
of linear equations. For a high-order Rayleigh wave or
quasi-Rayleigh wave the magnitude of the imaginary part
of the eigenvalue f8 or A can be a large number. Thus
very large and very small (relative to the computer's
word length) exponential terms may appear simultane-
ously in a diagonal matrix 0. When one uses a computer
to evaluate the matrix product in Eq. (32) or (34), these
exponential terms may cause severe loss of significant
digits in the numerical values of the T-matrix elements.
For example, it can be shown that theoretically the de-
terminant of the matrix product in Eq. (34) is unity for a
dielectric coated grating, but the numerically evaluated
matrix product may be singular if the number of layers
is high or the total thickness is large. The situation
here is exactly the same as the situation in which the
classical modal method was used to treat arbitrary grat-
ing profiles by the use of the multilayer approximation.'
There the R-matrix propagation algorithm was used with
spectacular success to remove numerical instabilities that
occurred for deep gratings. This algorithm can be used
here without any change.

In preparation for the application of the R-matrix
propagation algorithm the T matrix must be factored
such that

1i

T = I t'0
1=1

(35)

where 1' is an integer and the 0), to be defined below,
are called the sector t matrices. With this factorization
Eqs. (31) and (32) or (33) and (34) are equivalent to the
recursion formula

(36)

= TZkl)[J), j(h), (e) p(h) b(-1)]T,"e ,, , b(p

with
Q

T = In Wjkj(ej)Wj-1,
j=1

(33)

(34)

where m' E U-1), n' E U(+'), p E V(-'), and q E V(+').
The equivalent equations for other combinations of the
values of L, P, and Q can be derived similarly.

In principle, the solution to the grating problem is com-
pleted at this point. Indeed, as in Refs. 6, 9, and 10,
a system of linear equations of type (30) can be derived
from Eq. (31) or (33) and solved with a standard numeri-
cal technique. In practice, however, it turns out to be a
nontrivial matter as to how the linear system is derived
when a finite word-length computer is used.

provided that the column vector (fQT, X0T)T is the col-
umn vector on the right-hand side of matrix T in Eq. (31)
or (33) and that the column vector (fltT, X1,T)T is the
column vector on the left-hand side of Eq. (31) or (33).
In the R-matrix propagation algorithm Eq. (36) is trans-
formed into a different form,

(37)

where r(l) is called the sector r matrix and is related to
t0') in a 2 X 2 block form by

r(1) r(1) I -
r11 r12 _

l ) I = I (1)r2l r22 L -t12

- (I) - (1)
-t 21 t2 2

(I) () - 1 (1)
- t1t21 t22

(1)-i1
t2 l

(1) (1)-i .
tilt21 

(38)

Furthermore, the global R matrices are introduced by
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(Ql=) R(1) )(39)

It can be shown that the 2 X 2 blocks of the R matrices
obey the recursion formulas

(I) (1-1) (I-1) - 1)Ril = Rl + R12 Z R21

R1 2 =-R 1 2 Z(l)rl 2 ,

(1) (I)Z(I) (1-1)
R2 1 =r2l R l

R 1) = r22 - r21)Z()r(f', (40)

a division of the eigenvalues is always possible for a loss-
less dielectric layer, regardless of the grating profile, or
for a symmetrical grating profile, regardless of the per-
mittivity. If the grating profile is asymmetrical and the
medium is lossy, the division of the eigenvalues also
appears always possible because, as numerical experi-
ments show, the numbers of eigenvalues with positive and
negative imaginary parts are always equal, although it is
not clear if this assertion can be mathematically proven.
Application of the transformation rule (38) to this t ma-
trix gives

-= [ -A2-A 2 2 A-' exp(-iA-e) 1
Lexp(iA'e)(Al2 - All AlA2 2) exp(iA'e)AuA-l exp(-iA-e)j (44)

where

Z() = [r - R22)]_i. (41)

The recursion can be initialized by R(l) = r(l) or, if only
the reflected diffraction orders are to be determined, by
R() = W22 W22 when Eq. (31) is used and by
R(°) = Z(- @ Z-l)(-2l)-l when Eq. (33) is used,f 12 f22 [~2Z22
where 12 and 22 denote the blocks of the matrices written
in a 2 2 block form. After the R-matrix propagation is
completed with the above recursion scheme, a system of
linear equations of type (30) can be derived from Eq. (39)
with I = '.

The factorization of the T matrix is not unique, but it
is also not completely arbitrary. Apart from the obvi-
ous requirement that the 21 block of each t matrix be
invertible, there is a subtlety that the reader should be
made aware of. Suppose that the T matrix is defined by
Eq. (34). Then it seems natural to define the sector t ma-
trices such that t(i = Wj jW4-.W. However, a computer
program that I built based on this factorization scheme
was unable to produce correct diffraction efficiency val-
ues if any of the coated layers is thicker than approxi-
mately half of a wavelength, although it performed well
for gratings having dozens of coated layers less than this
thickness. Here again it was the exponential factor that
was causing the numerical difficulties-the loss of sig-
nificant digits already occurred in the construction of the
individual sector t matrices before they were converted to
the sector r matrices.

The remedy for the problem is to factor the T matrix
such that each t matrix either contains no 0 matrix or
has it exposed on one side, for example the left-hand
side. For the T matrix given by Eq. (34) the following
factorization seems to be a good choice:

Q
T = WQ [(ej)WjflWjl](el)WT'. (42)

j=2

Let us see how it works. With the layer-identifying sub-
scripts omitted, a typical sector t matrix in Eq. (42) takes
the form

t [exp(iA'e) 0 ][A l l A12

exp(iA-e) A21 A22

where A and A denote the eigenvalues of matrix M
with nonnegative and nonpositive imaginary parts, re-
spectively. It will be shown in Subsection 4.B that such

It is evident that the magnitudes of the exponential factor
in this sector r matrix are all decreasing functions of
the layer thickness and the eigenvalue order number;
therefore the catastrophic loss of significant digits that
would have happened if the matrix were sandwiched
between two W matrices has been avoided.

In summary, while the R-matrix propagation algo-
rithm provides the improved C method with robustness in
dealing with a large number of layers, the delicate con-
struction of the sector r matrix in Eq. (44) ensures its
numerical stability for large thickness of the individual
layers. When the R-matrix propagation algorithm is
properly implemented, a computer program based on the
improved C method should produce convergent results
without any of the numerical difficulties that have been
experienced by earlier authors regarding the total layer
thickness and the total number of layers.

B. Use of the Symmetry Properties
of the Eigenvalue Problem

1. Symmetry Properties of the Eigenvalue Problem
The algebraic eigenvalue problem associated with the ma-
trix M that is defined in Eq. (17) has many interesting
symmetry properties that, when they are fully applied,
can lead to significant reduction of numerical computa-
tion in the C method. Although the symmetry properties
of the counterpart of M in the nonconical mounts were
studied by Chandezon,16 they were not fully exploited for
numerical purposes. The symmetry properties of M in
the conical mountings, on the other hand, have not been
reported at all in the literature. The use of the symme-
try properties of M is detailed in the Subsections 4.B.2
and 4.B.3. In this subsection I enumerate the known
symmetry properties that are independent of the incident
angle and the matrix truncation. The following state-
ments are given without proof. The interested reader
can easily verify them by using elementary matrix ma-
nipulations, such as row and column exchanges and mul-
tiplications by scalars, on matrix M and by using the
symmetry properties of the Fourier coefficients Cm and
Dm given in Eqs. (7) and (8). Throughout Subsection 4.B
the medium-identifying subscripts are omitted.

Polarization Degeneracy. Regardless of the grat-
ing profile and the medium permittivity, for every
eigenvector (vlm, 2m, 3m, 4m)T of M associated
with the eigenvalue A there is another eigenvector
[(-/E)v2m, m, (u/E)V4m, 3m]T of M associated with
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the same A. Thus every eigenvalue of M is at least
doubly degenerate. The reason for calling this de-
generacy the polarization degeneracy will be made clear
in Subsection 4.B.2.

Reflection Symmetry. Assuming that the medium is
lossless, then, regardless of the grating profile, if A is an
eigenvalue of M, so is A, where the bar indicates complex
conjugation (a reflection with respect to the real axis of the
complex plane). Furthermore, if (vlm, V2m, V3m, 4m)T

is a (right) eigenvector of M associated with A, then
(V3m, - V4m, - Vim, V2m)T is a left eigenvector1 4 of M as-
sociated with A, i.e., it is a (right) eigenvector of M*
associated with A.

Reversal Symmetry. Assuming that the grating pro-
file is symmetrical, then, regardless of the medium
permittivity, if A is an eigenvalue of M, so is - A (a
simultaneous sign reversal of both the real and imag-
inary parts). Furthermore, if (m, V2m, V3m, V4m)

T is

a (right) eigenvector of M associated with A, then
(-v3m, -

1
4m, v1m, V2m)

T is a left eigenvector of M as-
sociated with -A, i.e., it is a (right) eigenvector of M*
associated with -A.

2. Use of the Polarization Degeneracy
It seems that the numerical work in solving the eigen-
value problem in the conical mountings can be reduced by
half because, according to the polarization degeneracy, if
2N eigenvectors corresponding to 2N distinctive eigenval-
ues are numerically determined, the other 2N eigenvec-
tors can be obtained analytically. However, for a general
eigenvalue problem solver, it takes as much time to obtain
half of the eigensolutions as to obtain all the eigensolu-
tions. Thus the polarization degeneracy cannot be taken
advantage of by the direct use of matrix M. However,
a careful analysis of Eqs. (14), from which matrix M is
derived, offers a much better solution.

It follows from Eqs. (14a) and (14b) that the x compo-
nents of the field can be expressed in terms of the z com-
ponents:

T 2 F.i OH2 OH ] 3 E2-E, = - 2[aa - (1 + a 2) a ca
K ax Oaui K x

H = E1 [ a - _ (1 + 2) Z ] + 3 OH-
K ax au K ax

Substitution of these two expressions into Eqs. (14c) and
(14d) yields two equations of identical form involving the
z components only:

[ 2 + (1 + a2) 2 2 2 a + k2] 
Lax2 Ou 2 Oxau au i\H 2

(45a)

concealed by Eq. (16). These characteristics, to be de-
scribed below, lead to significant reduction of computa-
tional effort for gratings in conical mountings.

The fact that E, and Hz are uncoupled means that there
are two types of solution to Eqs. (14): the H, type for
which Hz = 0 and the El type for which E2 = 0. Clearly,
when k, = 0, the He type corresponds to the TE polariza-
tion and the El type corresponds to the TM polarization.
From Eqs. (45) the HI- and El-type F vectors can be
easily obtained:

Eze)

0I

-( + ) a 1 I,

u i m ) I

0
HF(h)

I(h) = K H EmHhH

i72[a A -(1 + a2 ) at~i a x au im 

(47a)

(47b)

Since E2 and Hz satisfy the identical equation and the
pseudoperiodic condition, they share the same eigenval-
ues. For a given eigenvalue the eigenvectors given by
Eqs. (47a) and (47b) are clearly linearly independent;
hence the name polarization degeneracy. For the same
reason mentioned above, E, and Hz also share the same
functional form; therefore the two F vectors in Eqs. (47a)
and (47b) are determined by only one function, E(') for
example.

A reader who is familiar with the results of Chandezon
et al. may have recognized that Eq. (46) is exactly the
same as Eq. (7) in Ref. 8, provided that k2 is replaced by
P2. Therefore the eigenvalues and the eigenfunctions E,
and Hz of Eqs. (46) in a conical mount can be obtained as
solutions to the same equations but in the corresponding
induced nonconical mount (defined in Section 2) in one of
the two fundamental polarizations, for example the TE
polarization. Suppose that f = E, and g = (K/i)H2 in
the induced nonconical mount; then6 8

(45b)

(48)

where

Dmi-nan iUCm-n

= (k2 8mn- amCm-nan) amDm-n.
(49)

= t ) (46)

It is tacitly understood that these equations are to be
solved subject to the pseudoperiodic condition. When
Fourier expansions are used for all the x dependencies,

Eq. (46) is fully equivalent to Eq. (16). In the C method
Eq. (16) is solved instead of Eq. (46) because it yields an
easier numerical solution. However, Eq. (46) reveals cer-
tain characteristics of the eigenvalue problem that are

Once Eq. (48) is solved numerically, both f and g are
determined. On the other hand, from Eq. (45b) with
kz = 0,

gm= 1 [a af -(1 + a2) yf ] (50)

On substitution of f for E0e) and Hzh) in Eqs. (47a) and
(47b), respectively, the F vectors of both He and El types
can be written in terms of f and g:
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r fm

F(e) = O g
-IT1rl gm

T 3 amf. 

0 

F(h) = fm
73amfmJ

i 2 /LgFm

ing the construction of the inverse matrix effortless.
In preparation for the construction of W-1, the eigen-

(51) values of M need to be sorted appropriately. In this sub-
section I restrict the integers p, q, and r to the ranges

1 ' p ' No - 1, No • q O N, 1 r N, (52)
In this subsection the u-dependent F vectors have been

the subject of discussion. However, it is not difficult to
see that the conclusions that have been reached here ap-
ply to the eigenvectors of matrix M as well. In particular,
Eqs. (51) give two eigenvectors of M if (fi gm)' is taken
as the eigenvector of matrix M'.

In summary, the eigensolutions of matrix M for a grat-
ing in a conical mount can be obtained by solution of the
eigenvalue problem of matrix M' for the induced nonconi-
cal mount. The 2N eigenvalues of M' give the 4N eigen-
values of M, each of them being doubly degenerate, and
each eigenvector of M' generates two eigenvectors of M
by Eqs. (51). The bulk of the execution time (>90%) of a
computer program based on the C method is actually con-
sumed by the eigenvalue problem solver, and this amount
of time is roughly proportional to the cube of the matrix
dimension. Since matrix M' is only half the size of ma-
trix M, the procedure described above greatly reduces the
computation time of the C method. I performed some ex-
periments with two nearly identical computer programs
based on the C method. When modeling gratings in
conical mountings, the one that employed the procedure
to take advantage of the polarization degeneracy ran ap-
proximately four to five times faster than the one that
did not.

where No 2 0 is one fourth of the number of the real
eigenvalues (there are an equal number of positive and
negative eigenvalues). The 4N eigenvalues of matrix M
are ordered in eight blocks as follows:

{A(e)+} {A$e)+} {A h)+} {A h)+}

(53)

where

(54)

with the upper signs or the lower signs being taken simul-
taneously. Of course, because of the polarization sym-
metry, {Ape)+} {A h)±} and {A(e)+} {Ah)}. Within each
block the eigenvalues are ordered such that

(55a)

No ' a < b c N if Im[A(s)±] - Im[A )-]

or if Im[A(')±] = Im[A(s) ] and Re[Aas)±] < Re[A4 2]-

(55b)

With this ordering the W matrix can be written in a 4 X 8
block form:

3. Use of the Reflection and Reversal Symmetries
The reflection and reversal symmetries also find applica-
tions in the numerical implementation of the C method.
When Q > 0, the inverse matrices Wj'-, j = 1, 2, ... , Q,
appear in the formalism. Of course, one should never
compute Wj- separately and then form a matrix prod-
uct, such as Wj-'Wj-l in Eq. (42). Instead, the product
should be obtained as a solution to the matrix equa-
tion WjX = Wj-,. Even so, such a numerical procedure
is costly, especially when it must be repeated for many
coated layers. One can use the reflection and reversal
symmetries effectively to construct the inverse matrices
Wj-1 virtually without any numerical computation.

The magic is performed with the aid of the principle
of biorthogonality in matrix theory, 7 which says that if
M is a square matrix and if A and are its two eigen-
values with A u, then, for any left eigenvector w of M
corresponding to A and any right eigenvector v of M corre-
sponding to pt, wev = 0. In the present situation, thanks
to the symmetry properties, the left eigenvectors of M are
directly obtainable from the right eigenvectors, thus mak-

WL(e) +
Pilp

(e)+
v2p

(e)+
v3p

(e)+
V4p

(e)+ (h)+ (h)+
V(q hPi lq

(e)+ (h)+ (h)+
v2q v2p v2q

(e)+ (h)+ (h)+
V~q V3p V3q

(e)+ (h)+ (h)+
v4q P4p v4q

(e) -
Pip

(e)-
V2p

(e)-
V3 p

(e)-

(e)-
Vlq

(e)-
V2q

(e)-
P3q

(e) -
V4q

(h)-
Pip

(h)-
v2p

(h)-
V3p

(h)-
V4p

V1q

(h)-
V2 q

(h)- j
(h)-

V4q

(56)

where the subscripts identify the eigenvalues with which
the eigenvectors are associated and, for simplicity, the
subscript m in (s)± =4MP v etc., has been omitted.

In the following I assume that the spectrum of M does
not have any degeneracies other than the polarization
degeneracy. Then it is easy to verify that, for a lossless
coated layer,

W-'W = D, (57)

where D is a diagonal matrix, andL(e) +
V3p

(e)+

w-1 = - p4 p

-(e)+
-Pip

(e)+

(e)- (h) +
(e)3q (ap

(e)- _ (h) +
P 4q ~P4 p

(h)-
V3q

(h)-
V4q

(e)-
-3p

(e)-
V4p

(e)+
p3q

(e)+
V4q

(h)-
V3p

(h)-
V4p

(e)- (h)+ (h)- (e)- (e)+ (h)-
Vlq Pip - Vlq Pip - Vlq PiVlp

(e)- (h)+ (h)- (e)- (e)+ (h)-
V2q V2p V2q v2p V2q V2p

(h)+ -8
V3q

(h)+
- V4q

(h)+ 
Plq]

(h)+
P2q

* (58)
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It can be safely assumed that all the diagonal elements
of D are nonzero because the converse case is extremely
rare. Therefore the inverse of matrix W is given by

W` = D1WV1 . (59)

Essentially, the purpose of matrix multiplication above
is to normalize the left eigenvectors with respect to the
corresponding right eigenvectors. For gratings with a
symmetrical groove profile Eqs. (57) and (59) are still
valid provided that

(e)-
-V3r

(e)-

(Vr

(e)-

(h)- (e)+ (h)+ - T
- 3r - V3, - V3,

(h)- (e)+ (h)+
V4r - V4r - V4 r

(h)- (e)+ (h)+
Vlr Vir Vlr

V(h)- V(e)+ (h)+1
2r 

1
2r 

7
2r

In deriving Eqs. (58) and (60), I have used the fact that
the left-hand eigenvector and the right-hand eigenvector
of M having different polarizations are always orthogonal
regardless of their eigenvalues. It is easy to check that,
when both the lossless condition and the symmetry condi-
tions are satisfied, the two matrices defined by Eqs. (58)
and (60) are identical.

Besides the polarization degeneracy, matrix M may
have additional degeneracies, for example when an = - ao
for some n. In this case, instead of being diagonal, ma-
trix D becomes block diagonal. In principle, one can still
use Eq. (59) to define W-1. However, since it is difficult
to know a priori exactly which eigenvalues are degen-
erate, one must either numerically determine the loca-
tions of the nondiagonal blocks and then invert the blocks,
which increases the program's complexity, or apply a stan-
dard linear system solver to D as a whole. In such an
event it may simply be equally cost effective to obtain
W-1 directly by a numerical technique.

5. REDUCTION TO THE
CLASSICAL MOUNT

The mathematical description of the C method has been
given in Sections 3 and 4 for the conical mountings.

Most vectors and matrices there have been defined in
units of 1 N or N X N blocks. It is easy to reduce
all the equations to the nonconical mountings. Besides
setting k, = 0, one needs only to perform matrix contrac-
tions. The set of equations for the TE polarization can be
obtained if we cross out the second and fourth block rows
and block columns of all the vectors and the matrices.
Similarly, the set of equations for the TM polarization
can be obtained if we cross out the first and third block
rows and block columns of all the vectors and the matri-
ces. For example, matrix M' in Eq. (49) was obtained in
this way from matrix M in Eq. (17).

6. NUMERICAL EXAMPLES

The convergence of the C method has been investigated
by Popov and Mashev.11 1'2 As far as bare gratings are
concerned, their conclusion should remain valid for the
improved C method because the improvements made in
Subsection 4.B do not alter the underlying inner working
of the C method. On the other hand, their conclusions
for coated gratings are likely to be modified significantly
because the incorporation of the R-matrix propagation al-
gorithm into the C method has fundamentally changed
the way in which the system of linear equations leading
to the diffraction efficiencies is derived. However, a de-
tailed convergence study of the improved C method is be-
yond the scope of this paper.

This section serves two purposes: it provides some
tabulated results, which may be useful to a reader who
plans to implement the C method, and it provides a few
plots to illustrate the effectiveness of the improved C
method in dealing with coated gratings.

Tables 1 and 2 include diffraction efficiencies of two
bare and two metal-coated sinusoidal dielectric gratings
in a conical mount. The first bare grating is identical to
one of the gratings considered in Tables 1 and 2 of Ref. 18.
Note that the metal coatings are not sufficiently thick, so a
small amount of energy is transmitted into the substrate.

In Figs. 3-6 the diffraction efficiencies of sinusoidal di-
electric and metallic gratings having large numbers of di-
electric coatings of varying thicknesses are plotted. The
(vertical) thicknesses pj of the layers are measured in a
dimensionless unit, so that

Table 1. Diffraction Efficiencies of Bare and Metal-Coated Sinusoidal Gratingsa

Bare ~~~~~~~~Coated
Propagating Bare

Orderb hid = 0.1 h/d = 0.5 h/d = 0.1 h/d = 0.5

R, -3 0.38400(-4) 0.41490(-1) 0.27912(-3) 0.43038
R, -2 0.19458(-2) 0.12816(-1) 0.12472(-1) 0.90097(-1)
R, -1 0.27328(-1) 0.23730(-1) 0.14003 0.18422
R, 0 0.26590 0.77140(-1) 0.83747 0.26516
T, -5 0.25201(-7) 0.47617(-3) 0.95554(-10) 0.11117(-3)
T, -4 0.10985(-6) 0.28018(-3) 0.24464(-8) 0.23508(-3)
T, -3 0.26059(-4) 0.27595(-1) 0.18432(-6) 0.55610(-3)
T, -2 0.24662(-2) 0.71698(-1) 0.48483(-5) 0.21567(-2)
T, -1 0.63581(-1) 0.17254 0.56180(-4) 0.13404(-2)
T, 0 0.49256 0.18548 0.72484(-3) 0.25958(-2)
T, +1 0.14375 0.29541 0.29416(-3) 0.58921(-2)
T, +2 0.24006(-2) 0.91346(-1) 0.95765(-5) 0.20947(-2)

a = 15°, 0 = 600, d/A = 2, n(+l) = 1, n(-l) = 2, nj = 0.1 + i5.0, el/A = 0.1, and (h) = T.
bR, Reflected order; T, transmitted order.
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Table 2. Diffraction Efficiencies of Bare and Metal-Coated Sinusoidal Gratingsa

Propagating Bare Coated
Order hid = 0.1 h/d = 0.5 h/d = 0.1 h/d = 0.5

R, -3 0.70629(-4) 0.55051(-1) 0.91872(-3) 0.40090
R, -2 0.24214(-2) 0.50608(-2) 0.31398(-1) 0.19947
R, -1 0.14349(-1) 0.38300(-2) 0.26107 0.21474
R, 0 0.55655(-2) 0.49169(-2) 0.67563 0.12491
T, -5 0.54483(-7) 0.31483(-3) 0.12272(-8) 0.72505(-3)

*T, -4 0.55487(-7) 0.59471(-2) 0.33424(-7) 0.81708(-3)
T, -3 0.57954(-4) 0.68862(-1) 0.22882(-5) 0.36651(-2)
T, -2 0.40853(-2) 0.14226 0.46324(-4) 0.10160(-2)
T, -1 0.96658(-1) 0.14008 0.38754(-3) 0.81983(-2)
T, 0 0.71283 0.14560 0.24476(-2) 0.37013(-3)
T, +1 0.16212 0.35949 0.88808(-3) 0.43986(-2)
T, +2 0.18384(-2) 0.68595(-1) 0.65794(-4) 0.50533(-2)

'Same as Table 1, except that (e) = o.

0.0 0.2 0.4 0.6 0.8

Normalized Layer Thickness, p

The first example, shown in Fig. 3, is for a 15-layer-
coated silica (SiO2 , n = 1.46) grating. The coatings con-
sist of alternating layers of zinc sulfite (ZnS, n = 2.37) and
cryolite (Na3 AlF6 , n = 1.35), with a ZnS layer adjacent to
the SiO2 substrate. All the other parameters are identi-
cal to one of the gratings considered in Table 1 of Ref. 19.
Note that, although the bare grating's efficiency at the
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Fig. 3. First-order Littrow mount diffraction efficiency of a
coated sinusoidal grating. The parameters are A = 0.59 m,
d = 0.3333 Atm, h = 0.12 m, Q = 15, n(+') = 1.0, n(-l) = 1.46,
nj = 2.37 with oddj, nj = 1.35 with evenj, and TM polarization.
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Fig. 4. Same as Fig. 3 except that n(-l) = 1.15 +
nj = 2.37 with evenj, n = 1.35 with oddj, and Q = 8.
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Fig. 5. Dependencies of the peak first-order Littrow mount
diffraction efficiencies of the two gratings in Figs. 3 and 4 on
the number of coated layers. The normalized thickness is fixed
at p = 0.304.
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where A is the vacuum wavelength and n = /E is the re-
fractive index. It is assumed in the examples below that
all the coated layers have the same normalized thickness
p. The gratings are used in the TM polarization and,
except in Fig. 6, at the first-order Littrow mount.
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Fig. 6. Angular dependencies of the peak first-order Littrow
mount diffraction efficiencies of the two gratings in Figs. 3 and
4. The normalized thickness is fixed at p = 0.304.
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chosen groove depth, h = 0.12 /um, is only 3.3%, the ef-
ficiency of the coated grating is greater than 95% over
a wide range of coating thicknesses. The maximum ef-
ficiency of 99.8% occurs at p = 0.304. This curve was
calculated with a truncation order N = 17, and the error
in the sum of efficiencies was smaller than 1.0 X 10-10
for all the points calculated.

The second example, shown in Fig. 4, is for an eight-
layer-coated aluminum (Al, n = 1.15 + i7.15) grating.
The coating materials are the same as those in Fig. 3,
but here, adjacent to the Al substrate, is a Na 3AlF6 layer.
The bare Al grating has a peak efficiency of 88.7% at
the chosen groove depth h = 0.12 /um. Adding eight
layers of coatings boosts the maximum efficiency to ap-
proximately 99.7% at p = 0.304. This curve was calcu-
lated with a truncation order N = 19.

In Fig. 5 the differences between unity and the first-
order efficiencies of the two gratings considered in Figs. 3
and 4, with the coating thicknesses fixed at p = 0.304,
are plotted against the number of coated layers. Clearly,
these differences decrease exponentially as the number of
layers increases. The vertical offset between these two
sets of data roughly corresponds to the ratio between the
efficiencies of the two gratings before the coatings are
applied. From a practical point of view, one rarely needs
to have more than 8 coated layers for the Al grating or
more than 15 layers for the SiO2 grating.

The angular dependencies of the efficiencies of the two
gratings quoted in Figs. 3 and 4 are shown in Fig. 6. The
coating thicknesses are fixed at p = 0.304. Note that the
efficiencies of both gratings exceed 99% over an angular
span of 12°. The fact that the two curves closely follow
each other suggests that the angular behavior of a high-
efficiency coated grating is predominantly determined by
the grating profile and the coating materials rather than
by the substrate material.

7. DISCUSSION

The diffraction efficiency curves in Figs. 3-6 exhibit a
striking resemblance to the reflectivity curves of a multi-
layer thin-film reflector. Of course, the underlying
physical principle for both types of device is that of optical
interference, but the detailed light-medium interaction
occurring in a multilayer-coated grating is much more
complicated than that occurring in a multilayer thin-film
reflector. The high-efficiency characteristics shown in
these figures become even more amazing when one real-
izes that the curves are for a nonzero diffraction order and
that nowhere along the grating contour do the incident
light and the diffracted light locally obey the law of re-
flection. The basic principles and the design techniques
for thin-film optical filters are fully developed and well
documented.2 0 For multilayer-coated gratings, however,
much awaits to be developed.

Historically, high-efficiency reflection (surface-relief)
gratings have been exclusively made of metallic materials.
The examples of multilayer-coated gratings in Section 6
suggest that it is possible to make high-efficiency grat-
ings with the use of dielectric materials only. The ratio
of grating groove depth to period in this case is not at all
demanding from a fabrication point of view. The wide
and flat top of the high-efficiency peak makes control of

the coating thickness forgiving. The thin-film deposition
of many high-index and low-index materials is a mature
and inexpensive process. Despite all these merits, need-
less to say, the theoretical predictions need to be verified
experimentally. (In the paper of Mashev and Popov'3 a
maximum diffraction efficiency of 70% was achieved with
a nine-layer dielectric coated system.)

A fundamental limitation of the C method is its reliance
on the assumption that the top surface contour of every
coated layer perfectly replicates the initial grating pro-
file. Such an assumption is not strictly valid in reality,
however. The effects of imperfect replication on the
diffraction anomalies of low-efficiency gratings have been
studied by DeSandre and Elson.5 For high-efficiency
gratings the effects of imperfect replication on grating
efficiency have yet to be investigated.

8. CONCLUSIONS

The differential method of Chandezon et al. for multi-
layer-coated gratings has been improved so that the
computation time, especially for gratings in conical
mountings, is greatly reduced and the previously ex-
isting limitations on the total coating thickness and on
the total number of coatings are removed. The numeri-
cal examples have shown that a computer program that
is based on the improved C method and equipped with
the R-matrix propagation algorithm is capable of produc-
ing convergent results for gratings coated with several
dozen dielectric layers of total coating thickness exceed-
ing ten wavelengths without any numerical difficulty.
This newly achieved computational ability has opened
possible designs of multilayer-coated gratings that have
not been attempted before.

APPENDIX A

In order to define succinctly the four Z matrices that are
used in Section 3, I first define some auxiliary notation:

L.(7J) = f exp[i'7a(x) - imKx]dx,

where is a dummy variable and the
one grating period,

(Al)

integration is over

Amn( 77 ) = amLm.-n(7),

B(%1)(77) =k± - aman Lnn(71),
mn+1)= 2 L -1[-A(+l~(±1)

Klmq = E1ml-(l]~qX

NPIZ ' (±1)

(m= E Lm-l[-Aq]Wiq

K~mq = E Lm-l[-A(±')]
1=1 +(±1) _ N(±) 'J

K~mq ~Lr-I[~A('W]1
11q W 2Tq],W

(+1) (K) (lA±~
[+r3 amW11q + 2 q 2lqJ)]

(A2)

(A3)

(A4a)

(A4b)

(A4c)

(A4d)

where the W(±) are matrices formed by juxtaposition of
the eigenvectors of matrix M for the two transition media
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and the subscripts 1-4 for the matrices K(±+) and W(±+)
designate the block rows of these matrices when they are
written in a 4 1 block form. With this new notation
the Z matrices are defined in the following block forms
with the block sizes specified by the ranges of the indices:

respectively, in Eqs. (7), (8), and (Al). For a sinusoidal
grating profile

a(x) = - [1 - cos(Kx)]
2

(B1)

0 Lm] 0f4~~] w(+) 0Lm-j-P1+1)]

Z+) W2mq 

f-1 Bm+,g+l[p+) 7 3+)A.1[8(+1)] Wl -(+)B+[-1]

+2 Bm F) 1)r+' 1..(+)wi+t)Ahl[,8(+')] r( BmI EP, W(+ r(+')A n[_,(+1)]

with

1E U(+)

0 1

I,
(+1) n[-,(+l)]

73 Amn[ n

T2+) )B(+n)[-,(+1)]

m U n U q E V(+');

(A5a)

(A5b)

[3(-1)]Lm-l[Pl I

(-1) 0

Zf --T Bm, [PI 

Bin1 [ Am(-1)(-1)
wi 3 t

with

0

Lm-j[P I] 0

(-1) ( 1)a ( 
1
)1 (-

1
) (-1)]

2 Bml LPL 3 Amn[-Pn 

0

Lm-n[-6n-l)]

72lB l[}(-1) ](-1) (-) i(-1)1

~2 Dmn nJ

E U m E U n U(-'),

5mi

Z(+1) - K+l) 0

T(+1) m m
Lt73 hmAml

with

om1 1)
Kl+,q

K(+1)
5ml K2mq

73 6m 9Sml

8 mn

0

K(+ 1) (+ 1) (+ 1),
Kamq 7(1 m

K~Jm? 73 'amgmn

0 1

8mn
I,

(+1)
7r3 arm mn

-7+ 1) (+1 m

I E U(+)', mE U n E U,

and

.5ml

Z(-1) =
g -T (-1) B(-'5m 

1r Cm ml

0

8m

7(-1) a

72- 1),6(- 1)6

73 am 'm

8mn

0
Tf( 1) 8mn)

(-1)
73 am mn

0 Klmq

'~~mn ~ (-1) 
16mn K2mq

7(-1) a 5m K(-1) 73 a3 
8
mn Kmq j

-2 )X mn K(-1)

(A8a)

with these coefficients have simple analytical expressions:

I E U, m E U, n E U(-'), q E V(-). (A8b)

It can be shown that, for sufficiently large N, [V(+1 )] +
2[U(+)] = [V(-')] + 2[U(-')] = 2N, where the square
brackets denote the number of elements in the set be-
ing enclosed. Thus Zf- and Zg are square matrices.

APPENDIX B

The C method requires the evaluation of three Fourier
expansion coefficients, Cm, D,, and Lm, which are defined,

Cm

{ l+1 P ]nm

Dm

([
.i _ Iml

= snM) ( + p2)1/2 I + (1 + p2)1/2

(-I) -
Wlmq

(-1) 
W2mq)

W3mq

(W1)

(A6a)

q E V(-); (A6b)

(A7a)

q E V(+) ; (A7b)

odd

even (B2)

m even

m odd '

(B3)
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where p = v-h/d, and

(B4)

where J is the Bessel function. Note that the coefficients
Cm and Dm converge to zero geometrically.
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