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Abstract. In a recent Letter to the Editor (1995Pure Appl. Opt. 4 1–5), the differential
formalism of Chandezonet al (the C method) was extended to treat layered gratings in which
the profiles of the medium interfaces within the same grating are different from each other.
Numerical experiments have shown that a computer program based on the recipe given in
the Letter gives excellent numerical results for diffraction efficiencies. However, a crucial
assumption was implicitly used without justification. In this paper, we examine this assumption
and comment on its validity. In addition, we suggest two alternative ways to extend the C
method, and show that one of them is as effective as the recipe given in the Letter.

1. Introduction

The original differential formalism of Chandezonet al [1, 2] (henceforth, the C method) has
been proven to be a powerful method for modelling multilayer-coated diffraction gratings in
the entire optical region. However, it was only applicable to the case in which all contours
of the medium interfaces of a grating have the same functional form and amplitude. This is a
severe limitation because in reality the medium interfaces of coated gratings never perfectly
follow each other. Moreover, in some applications the interface profiles are intentionally
shifted relative to each other in the direction of the grating vector [3].

Recently, Granetet al [4] extended the C method to allow the periodic medium interfaces
to have different functional forms and amplitudes. Numerical experiments have shown that
a computer program based on the procedure suggested in [4] gives excellent numerical
results for diffraction efficiencies. However, in the theoretical presentation of [4], a crucial
assumption was implicitly used without justification. Basically, this assumption asserts that,
throughout a medium between two interfaces the sum of all upward (downward) propagating
waves and upward (downward) decaying waves expressed in terms of the eigensolutions of
Maxwell’s equations in one coordinate system is equal to a similar sum expressed in the
other coordinate system. In this paper, we carefully examine the validity or invalidity of
this assumption. In addition, we suggest two alternative ways to extend the C method, and
show that one of them is as effective as the extension suggested by Granetet al.

2. Background information

Here, we only give the mathematical formulae of the C method to the extent necessary for
the reader to follow the discussions in the subsequent sections. A reader who is not familiar
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with the original C method is referred to [1] and [2] for more background information.
To achieve maximum clarity and ease of reading, we use a notation that is substantially
different from that used in [4].

Without loss of generality, we only consider the non-conical mount and theTE

polarization (electric field vector parallel to the grating grooves). The Gaussian system
of units and the harmonic time convention exp(−iωt) are used. The magnetic permeability
is assumed to be unity everywhere. The Cartesian coordinate system and the notation for
the media and medium interfaces are illustrated in figure 1. For the sake of simplicity, only
two representative adjacent interfaces are shown. The interfaces in general have different
functional forms and amplitudes, but they share a common periodd. The thicknessep of
layer p is measured between the mid lines of the two boundaries.

Figure 1. Notation for the description of a layered grating.

In contrast to the original C method, where one curvilinear coordinate system applies
to all periodic interfaces, in the present case every interfaceap(x) generates a curvilinear
coordinate system:

xp = x up = y − ap(x) zp = z . (1)

Thus, the interface represented byy = ap(x) is given byup = 0. Whenever there is
no danger of causing confusion, we will drop the subscript for variablex andz. However,
the reader should bear in mind that the direction of unit vectorx̂p depends onp.

We denote all matrix quantities that depend on both the medium and the coordinate
system by using a pair of superscripts enclosed in parentheses, the first superscript for the
medium number, and the second for the coordinate system in which the eigensolutions are
obtained, leaving the subscripts for labelling the matrix elements. For quantities that depend
only on the coordinate system, a single superscript enclosed in parentheses is used. For
scalar quantities, subscripts are used, except for the vector components of the fields printed
in bold face. Following the tradition of the C method, we have

F (p,q)(x, uq) = E(p,q)
z (x, uq) (2a)

G(p,q)(x, uq) = κH (p,q)
xq

(x, uq) (2b)

whereκ is the vacuum wavenumber.
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In the C method, Maxwell’s equations are written in a covariant form and the
electromagnetic fields are expanded in Fourier series. This procedure leads to a matrix
algebraic eigenvalue problem (in a spatial region where the permittivity is a constant):

M(p,q)

(
F

(p,q)
m

G
(p,q)
m

)
= λ(p,q)

(
F

(p,q)
m

G
(p,q)
m

)
(3)

whereλ(p,q) is the eigenvalue,F (p,q)
q and G

(p,q)
m , together as the eigenvector, are theuq

independent Fourier coefficients ofF (p,q) andG(p,q), andM(p,q) is a complex matrix whose
definition can be found, for example, in [2]. Here, we have used a typical element, e.g.
F

(p,q)
m , to represent the whole sub-column vector. This type of short-hand notation will be

used frequently in this paper.
We partition the full eigenvalue spectrumσ (p,q) of λ(p,q) as follows:

σ (p,q) = σ (p,q)+ ∪ σ (p,q)− (4)

where

σ (p,q)+ = {λ(p,q)
m ; Reλ(p,q)

m + Im λ(p,q)
m > 0, ∀m} (5a)

σ (p,q)− = {λ(p,q)
m ; Reλ(p,q)

m + Im λ(p,q)
m < 0, ∀m} . (5b)

It can be shown that for any truncation ofM(p,q) to a finite size,σ (p,q)+ andσ (p,q)− have
the same number of elements. From now on, we denote quantities corresponding toσ (p,q)±

by subscripts or superscripts±. Also, we call an eigensolution of equation (3) associated
with λ(p,q)+ an up-wave and that associated withλ(p,q)− a down-wave. From equation (5),
an up- (down-) wave is either propagating or decaying in the upward (downward) direction.
The sum of all up- (down-) waves can be written as:

F
(p,q)
± (x, uq) =

∑
m,n

eiαmxF (p,q)±
mn eiλ(p,q)±

n uq ν(p,q)±
n (6a)

G
(p,q)
± (x, uq) =

∑
m,n

eiαmxG(p,q)±
mn eiλ(p,q)±

n uq ν(p,q)±
n (6b)

where (F
(p,q)±
mn , G

(p,q)±
mn ) and ν

(p,q)±
n are the eigenvector and its amplitude, respectively,

corresponding to eigenvalueλ(p,q)±
n , andαm is defined conventionally

αm = α0 + mK α0 = ki sinθ K = 2π/d (7)

with ki being the wavenumber of the incident medium.
Equations (6), as representations for thepartial fields, are valid solutions of Maxwell’s

equations, excluding the boundary conditions, everywhere in mediump. For thetotal fields,
however, similar expressions cannot be written without a careful consideration of the spatial
domains in mediump because the boundary conditions have to be imposed. In figure 2, the
dashed curves̃ap(x) and ãp−1(x) are obtained by shiftingap(x) andap−1(x) down and up
so that they are tangent toap−1(x) andap(x), respectively. In mediump we define three
spatial domains as follows:

�p: the space bounded byap(x)andap−1(x)

�+
p : the space bounded byap(x)and ãp(x)

�−
p : the space bounded byap−1(x)and ãp−1(x) .

Thus, for the total fields, we have

F (p,p)(x, up) = F
(p,p)
+ (x, up) + F

(p,p)
− (x, up)

G(p,p)(x, up) = G
(p,p)
+ (x, up) + G

(p,p)
− (x, up)

(x, up) ∈ �+
p (8)
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Figure 2. Domains where the full-spectrum expansions for fields are valid. (a) The overlap
domain covers a full grating period. (b) The overlap domain does not cover a full grating period.

and

F (p,p−1)(x, up−1) = F
(p,p−1)
+ (x, up−1) + F

(p,p−1)
− (x, up−1)

G(p,p−1)(x, up−1) = G
(p,p−1)
+ (x, up−1) + G

(p,p−1)
− (x, up−1)

(x, up−1) ∈ �−
p . (9)

Clearly, in the overlap domain,�+
p ∩�−

p (the cross-hatched domain in figures 2(a) and 2(b)),
both equations (8) and (9) are valid. Outside the domains specified in (8) and (9), these
equations may be invalid because the permittivity is not a constant with respect tox.
To see that this is true, one only needs to consider the special case in whichap−1(x)

represents a horizontal straight line. Then equation (9), when used in domain�+
p , becomes

a mathematical statement of the Rayleigh hypothesis. It is worth noting that when the
two curves are sufficiently close and their amplitudes are sufficiently different the overlap
domain becomes discontinuous with respect tox in either coordinate system (cf figure 2(b)).

The virtue of the C method is that it allows the boundary conditions be written simply
and accurately by taking advantage of the fact that the medium interface coincides with a
coordinate surface of the natural coordinate system. The boundary conditions atup = 0 are
satisfied by requiring

F (p,p)(x, 0) = F (p+1,p)(x, 0)

G(p,p)(x, 0) = G(p+1,p)(x, 0) .
(10)

Or, in terms of scattering matrix,(
ν(p+1,p)+

ν(p,p)−

)
= s ′ (p)

(
ν(p,p)+

ν(p+1,p)−

)
(11)

with

s ′ (p) =
(

F
(p+1,p)+
mn −F

(p,p)−
mn

G
(p+1,p)+
mn −G

(p,p)−
mn

)−1(
F

(p,p)+
mn −F

(p+1,p)−
mn

G
(p,p)+
mn −G

(p+1,p)−
mn

)
(12)

where the superscript (p) of the s ′ matrix refers to the interface where the boundary
conditions are matched.

Equation (11) does not possess a recursive form with respect to the interface number.
Referring to figure 3, where the two solid lines schematically represent the two curved
interfaces in figure 1, what we have accomplished is crossing the solid linep. If the two
interfaces were identical,ν(p,p−1)±

n and ν
(p,p)±
n would have been linked one-to-one by an

exponential propagating factor, and equation (11) could be easily modified to have the
desired recursive form. When the two interfaces are not identical, connectingν

(p,p−1)±
n and
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Figure 3. Schematic description of up-waves and down-waves in a layer. The solid lines
represent real medium interfaces, and the dashed line represents the need for coordinate
transformation.

ν
(p,p)±
n across the dashed line in figure 3 is not so simple, and how to cross the dashed line

is the central issue of this paper.
Actually, the problem of layered gratings with two different profiles has been dealt with

in the literature for the special case in which one of the interfaces is planar. Two approaches
have been taken to represent the fields in the region bounded by a curved interface on one
side and a planar interface on the other. Popov and Mashev [5] used the full spectrum of
eigensolutions in the curved coordinate system. Li [6] used a sum of the eigensolutions
in the Cartesian coordinate system (Rayleigh waves) and the eigensolutions in the curved
coordinate system (quasi-Rayleigh waves).

3. Half-spectrum connection methods

The dashed line in figure 3 does not represent a physical boundary. Thus, there are no
boundary conditions to be matched. We only need to connect the amplitudes of the field
expressed in one coordinate system to the amplitudes of the same field expressed in the
other coordinate system, a procedure which we will refer to as field connection.

3.1. The method of Granet et al [4]

In [4], the field connection is accomplished by making the following assumption:

Assumption A. For any(x, up) and(x, up−1) describing the same point in�p,

F
(p,p)
± (x, up) = F

(p,p−1)
± (x, up−1) . (13)

(We will discuss the validity of the above assumption later.) The condition for(x, up) and
(x, up−1) to describe the same point is

up + ap(x) = up−1 + ap−1(x) . (14)

If we demand that equation (13) be true along a curveup = constant, we have

F
(p,p)
± (x, up) = F

(p,p−1)
± (x, up + ap(x) − ap−1(x))

= F̃
(p,p−1)
± (x, up) (15)

where

F̃
(p,q)
± (x, u) =

∑
m,n

eiαmxF̃ (p,q)±
mn eiλ(p,q)±

n uν(p,q)±
n (16)
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with

F̃ (p,q)±
mn =

∑
l

L
(p,q)±
m−l,n F

(p,q)±
ln (17)

and

L(p,q)±
mn = 1

d

∫ d

0
eiλ(p,q)±

n [ar (x)−aq (x)] e−imKx dx . (18)

In equation (18),

r = r(p, q) =
{

p if q = p − 1

p − 1 if q = p .
(19)

Similarly equation (13) taking onup−1 = constant gives,

F
(p,p−1)
± (x, up−1) = F̃

(p,p)
± (x, up−1) . (20)

Throughout this paper, we use a tilde aboveF (p,q) and G(p,q) to denote the vector
components of the field that are in coordinate systemr(p, q), have (x, ur) as spatial
variables, and are expressed in terms of the eigensolutions in coordinate systemq. (G tilde
will be needed later in section 4.) It is extremely important that the reader fully understand
the above definition of̃F (p,q) andG̃(p,q) because they play a crucial role in the definitions
of the different field connection methods that we will introduce below.

With the above preparation, the field connection method adopted in [4] can be expressed
as (method 1)

F
(p,p)
+ (x, 0) = F̃

(p,p−1)
+ (x, 0) (21a)

F̃
(p,p)
− (x, 0) = F

(p,p−1)
− (x, 0) . (21b)

In terms of scattering matrix, we have(
ν(p,p)+

ν(p,p−1)−

)
= s ′′ (p)

(
ν(p,p−1)+

ν(p,p)−

)
(22)

with

s ′′ (p) =
(

[F (p,p)+
mn ]−1F̃

(p,p−1)+
mn 0

0 [F (p,p−1)−
mn ]−1F̃

(p,p)−
mn

)
(23)

where the superscript(p) of thes ′′ matrix refers to the medium in which the field connection
is made. Equation (21) describes a half-spectrum connection method, since the two halves
of the eigenvalue spectrum are connected separately. For later reference, we will call it
method 1.

By combinings ′ (p) ands ′′ (p) in the usual way for scattering matrices, a layer scattering
matrix can be formed(

ν(p+1,p)+

ν(p,p−1)−

)
= s(p)

(
ν(p,p−1)+

ν(p+1,p)−

)
(24)

which has the required recursive form. The whole grating problem can then be solved using
the usual recursion formulae for the global scattering matrices.



Topics in extending the C method to multilayer gratings 147

3.2. Physical consideration about assumption A

From an intuitive physical point of view, assumption A seems very reasonable. Indeed,
within layerp there is no physical boundary; therefore, there is no physical mechanism that
can turn an up-wave to a down-wave or vice versa. From a fundamental physical point of
view, an up-wave or a down-wave is a physical entity (not in a practical sense); therefore,
its eigensolution character should be invariant under a coordinate transformation. Note that
the coordinate transformation fromy to up in equation (1) is linear and has a positive unity
magnification. Thus, the physical consideration not only supports assumption A, it further
suggests a one-to-one correspondence between the waves of the same type in two different
coordinate systems.

Unfortunately, the invariance of some of the eigensolutions is severely destroyed by
the matrix truncation that is unavoidable in the numerical implementation (for numerical
examples, see section 6). Thus, once the matrix truncation is imposed, the eigensolutions
are not only physical but also mathematical objects, and assumption A becomes suspect.

3.3. Mathematical consideration about assumption A

Even if the validity of assumption A can be established on physical grounds, equation (13)
is not an identity when matrix truncation is imposed. Take equation (20) as an example. The
left-hand side contains eigenvalues inσ (p,p−1)±, but the right-hand side contains eigenvalues
in σ (p,p)±. We know that for any truncationσ (p,p−1)± 6= σ (p,p)±. Therefore, equation (20)
cannot be satisfied for a continuous variableup−1. It can only be viewed as an approximate
equation.

More importantly, without a proper restriction of the domain of validity, assumption A
could lead to the Rayleigh hypothesis. For example, if we apply equation (13) to both the
up-waves and the down-waves at the same locationup = 0 we get, (method 2)

F
(p,p)
+ (x, 0) = F̃

(p,p−1)
+ (x, 0) (25a)

F
(p,p)
− (x, 0) = F̃

(p,p−1)
− (x, 0) . (25b)

In the special case whenap−1(x) represents a horizontal straight line, settingup = 0 in
the first equation of equation (8) and making the substitution of equation (25), we get a
mathematical statement of the Rayleigh hypothesis. Note that the Rayleigh hypothesis is
cleverly avoided in method 1 by connecting the up-waves and the down-waves atdifferent
locations.

Next, we consider the asymptotic behaviour of the eigenvalues and eigenvectors.
Suppose the Fourier series of the fields are truncated to haveP terms symmetrically on both
sides of the 0 order. Then, the dimension of matrixM (p,q) is N = 4P +2. The numerically
computed eigenvalues and eigenvectors therefore depend onN . In this subsection, we use
an additional superscript,N , to indicate this dependence. Numerical experiments show that
for a fixed constantn,

lim
N→∞

λ(p,q,N)±
n = ±β(p)

n (26)

whereβ
(p)
n is the usualy component of the wavenumber in the Rayleigh expansion (the

Rayleigh eigenvalue). In equation (26), we have assumed that±β
(p)
n and λ

(p,q,N)±
n have

been properly ordered with respect ton. The interesting feature of equation (26) is that
the limit is independent of coordinate systemq. This is not surprising because in a
homogeneous space the eigensolution of Maxwell’s equation is just a plane wave and,
as remarked in subsection 3.2, the eigenvalue should remain invariant under the coordinate
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transformation given by equation (1). It is extremely important to note that the convergence
in equation (26) is non-uniform: for equation (26) to be true,n must be a constant. (In
the special case ofaq(x) representing a planar surface, the limit sign can be removed.) An
expression describing the asymptotic behaviour of the eigenvectors, similar to but much
more complicated than equation (26) also exists, but it will be not presented here.

Numerically speaking, for a sufficiently largeN approximately half of the eigenvalues
in σ (p,q,N) that have smaller absolute values (lower order numbers) are equal to the Rayleigh
eigenvalues; the other half are very different from the Rayleigh eigenvalues. In fact, the
higher-order half generally assumes complex values even for a lossless medium. As has
been commented by the previous authors [1, 2], one cannot simply throw away the higher-
order half of the eigensolutions. The asymptotic behaviour exhibited in equation (26) is
essential to the success of the C method.

The conclusion of this asymptotic analysis is as follows. From a mathematical point of
view, althought the convergence of the lower-order half of the spectrum supports assumption
A, the non-convergence of the higher-order half of the spectrum destroys its validity.
Furthermore, because the higher-order half of the eigensolutions do not have clear physical
meaning, it is difficult to use the physical consideration given in subsection 3.2 to support
assumption A.

4. Full-spectrum connection method

In subsections 3.2 and 3.3, we have shown that assumption A is essentially based on physical
intuition or on the invariance of the eigenvalues of Maxwell’s equations, and because of the
inevitable matrix truncation occurring in numerical analysis, this assumption is questionable.
On the other hand, the laws of physics also require that the total electromagnetic field
be covariant under a coordinate transformation. If at a given location the eigenfunction
expansions of the total field in two coordinate systems both converge, they should correspond
to the same physical field. In other words, they should be related by the tensor transformation
rule. Although the covariance of the total field is not exactly preserved due to matrix
truncation, its accuracy should improve as the matrix size increases.

Suppose that the two interfaces are sufficiently apart, as in figure 2(a). Let 1p =
ap(x) − ãp(x). If we connect the field expressed in coordinate systemp andp − 1 along
ãp(x), then we have the full-spectrum connection method, (method 3):

F (p,p)(x, −1p) = F̃ (p,p−1)(x, −1p) (27a)

G(p,p)(x, −1p) = G̃(p,p−1)(x, −1p) (27b)

where

F̃ (p,q)(x, u) = F̃
(p,q)
+ (x, u) + F̃

(p,q)
− (x, u) (28a)

G̃(p,q)(x, u) = G̃
(p,q)
+ (x, u) + G̃

(p,q)
− (x, u) (28b)

and

G̃
(p,q)
± (x, u) =

∑
m,n

eiαmxG̃(p,q)±
mn eiλ(p,q)±

n uν(p,q)±
n (29)

G̃(p,q)±
mn =

∑
l

{
[1 + ȧ2

r ]m−lλ
(p,q)±
n − [ȧr ]m−lαl

}
F̃

(p,q)±
ln (30)

The integerr in equation (30) is defined in equation (19). Note that the expression of
the G tilde matrix above has already taken account of the covariant change of the vector
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component. Equation (27b) is necessary because equation (27a) alone is insufficient for
uniquely determining a scattering matrix relatingν

(p,p−1)±
n and ν

(p,p)±
n . Now, to replace

equation (23) we have

s ′′ (p) =
(

eiλ(p,p)+
m 1p 0

0 1

)(
F

(p,p)+
mn −F̂

(p,p−1)−
mn

G
(p,p)+
mn −Ĝ

(p,p−1)−
mn

)−1

×
(

F̂
(p,p−1)+
mn −F

(p,p)−
mn

Ĝ
(p,p−1)+
mn −G

(p,p)−
mn

)(
1 0

0 e−iλ(p,p)−
n 1p

)
(31)

where

F̂ (p,p−1)±
mn = F̃ (p,p−1)±

mn e−iλ(p,p−1)±
n 1p (32a)

Ĝ(p,p−1)±
mn = G̃(p,p−1)±

mn e−iλ(p,p−1)±
n 1p . (32b)

If the situation as shown in figure 2(b) occurs, the full-spectrum connection methoda
priori cannot be applied. This is because in this case equations (27) are only valid over a
portion of the grating period, the completeness of the Fourier basis cannot be used to derive
the matrix equation (31) from the functional equations (27).

5. Hybrid-spectrum connection method

Assumption A given in section 4 can be replaced by a new assumption below:

Assumption B. At any point(x, y) in �p, the total field,F (p), is given by

F (p)(x, y) = F
(p,p−1)
+ (x, up−1(y)) + F

(p,p)
− (x, up(y)) . (33)

This assumption was conceived by extracting the useful information from method 1
as specified by equations (21) and by extending the successful procedure reported in
the literature in treating the transition between a curvilinear coordinate system and the
Cartesian coordinate system [1, 2, 6]. Similar to the case of assumption A, it is difficult
to mathematically prove the validity of assumption B. Nonetheless, its physical meaning
is clear: the total field everywhere in a layer is given by the superposition of all scattered
waves from the two boundaries. In mediump, the sum of scattered waves from interface
p − 1 is F

(p,p−1)
+ , and that from interfacep is F

(p,p)
− .

There are several advantages in using assumption B over assumption A. (i) Assumption
B avoids the danger of invoking the Rayleigh hypothesis. (ii) Assumption A can be derived
from assumption B with the proper restriction of the domains of validity imposed. (iii)
Equation (33) can be used directly to match boundary conditions, eliminating the need to
connect fields, as demonstrated below.

Using field representation equation (33) to satisfy the continuity ofEz across interfacep,
we have (method 4)

F
(p+1,p)
+ (x, 0) + F̃

(p+1,p+1)
− (x, 0) = F̃

(p,p−1)
+ (x, 0) + F

(p,p)
− (x, 0) . (34a)

It is easy to see that the corresponding continuity equation forHx is

G
(p+1,p)
+ (x, 0) + G̃

(p+1,p+1)
− (x, 0) = G̃

(p,p−1)
+ (x, 0) + G

(p,p)
− (x, 0) . (34b)

From the two equations above, the scattering matrixs(p) in equation (24) can be derived:

s(p) =
(

F
(p+1,p)+
mn −F

(p,p)−
mn

G
(p+1,p)+
mn −G

(p,p)−
mn

)−1(
F̃

(p,p−1)+
mn −F̃

(p+1,p+1)−
mn

G̃
(p,p−1)+
mn −G̃

(p+1,p+1)−
mn

)
. (35)
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In comparison with the other methods, where the layer scattering matrixs(p) is
constructed in two steps, here only one step is needed. It is also worth noting that half
of the eigenvectors ofM(p,q), i.e.

(
F

(p,p)+
mn , G

(p,p)+
mn

)
and

(
F

(p,p−1)−
mn , G

(p,p−1)−
mn

)
are never

used in method 4.

6. Numerical examples

In this section, we first present a brief numerical investigation concerning the validity of
assumption A. Then, we give some results of the convergence of diffraction efficiencies
computed by the four field connection methods defined previously. For simplicity, we only
consider single-layered gratings, which can be obtained by settingp = 2 in figure 1. The
two medium interfaces, except for cases in tables 7 and 8, are described by

a1(x) = h1

2
cosKx a2(x) = h2

2
cosKx + e2 . (36)

If we consider that the full-spectrum connection method is more reliable than the
half-spectrum connection method on physical and mathematical grounds, then we can
numerically investigate the validity of assumption A. From equation (27), we have(

ν
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Thus, the two off-diagonal sub-matrices,t
(p)

21 and t
(p)

12 , couple the up-waves and the
down-waves of coordinate systemp − 1 along curveup−1 = 0 to the down-waves and up-
waves of coordinate systemp along curveup = −1p respectively. According to assumption
A, these off-diagonal blocks should be zero.

In figure 4, the sub-matricest2
11 and t

(2)

12 are ‘plotted’. The horizontal and vertical axes
represent the row and column positions. If the absolute value of a matrix element is greater
than 10−6 (double precision is used here), its position is marked by a dot; otherwise the
position is unmarked. It is evident that as the matrix dimension increases, the lower-order
half of the up-waves are only coupled to the up-waves of the same order; however, the
higher-order half of the up-waves not only couple to the up-waves of other higher orders
they also couple to the down-waves of high orders.

Next, we consider the convergence of diffraction efficiencies computed by the four field
connection methods for the following four different grating cases.

Case 1. Sinusoidal gratings, grating periodd = 1.5, groove depthsh1, h2 = 0.2, 2.0,
wavelengthλ = 1.0, incident angleθ = 15◦, permittivitiesε1 = ε3 = 1.0, ε2 = 2.25.

Case 2. Sinusoidal gratings, grating periodd = 1.3, groove depthsh1, h2 = 0.1, 1.0,
wavelengthλ = 0.55, incident angleθ = 30◦, permittivities ε1 = 2.25, ε2 = 4.0,
ε3 = 1.0.

Case 3. Sinusoidal gratings, grating periodd = 1.3, groove depthsh1, h2 = 0.1, 1.0,
wavelengthλ = 0.55, incident angle at the second order Littrow, permittivities
ε1 = −25, ε2 = 2.25, ε3 = 1.0.

Case 4. Triangular gratings, grating periodd = 2.0, d1 = 0.5 (d1 is the horizontal distance
between a minimum of the profile and the nearest maximum on its right side), groove



Topics in extending the C method to multilayer gratings 151

Figure 4. Schematic representation of the sparseness of the sub-matricest
(2)
11 and t

(2)
12 for a

grating that is defined in case 1, except thath1 = 0.2 andh2 = 0.1. Here,e2 is irrelevant and
the polarization isTE.

depthsh1, h2 = 0.1, 0.5, wavelengthλ = 1.0, incident angleθ = 45◦ permittivities
ε1 = 2.25, ε2 = 4.0, ε3 = 1.0.

Case 1 is basically taken from [4]. It is a relatively easy case because there are only
three diffraction orders in both semi-infinite media, although we have chosen the larger
groove depth to be greater than the grating period in order to make the convergence of the
computer codes more demanding. Case 2 is more stringent than case 1 because it allows
many more propagating orders. The substrate in case 3 is metallic, but we intentionally
set the imaginary part ofε1 to zero so that the grating is lossless. For case 4, we have
considerably reduced the grating groove depths because the convergence rate of the C
method is much slower for a triangular profile than for the sinusoidal profile, for the same
groove depth.

Tables 1–4 give the absolute values of the differences between unity and the sums of all
diffraction efficiencies that are computed by our computer programs based on the four field
connection methods. In these tables the spacinge2 between the two interfaces is specified
by a parameterγ :

e2 = (γ + 0.5)|h1 − h2| . (39)

Thus, whenγ = 0 the two interfaces are tangent to each other, andγ = 1 gives the
minimum e2 such that the overlap domain in figure 2(a) spans a full grating period. The
integers in parentheses are base 10 exponents. For these results,P = 20.
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Table 1. Errors in conservation of energy (TE polarization) by different field connection methods
for the sinusoidal gratings in case 1.

Field connection method
(h1 = 0.2, h2 = 2.0) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 6.9(−6) 2.6(−8) 4.5(−8) 1.3(−8)

2 � 0 � 0 � 0 � 0
3 � 0 � 0 3.6(−3) 2.8(−3)

4 1.3(−5) 9.6(−9) 4.4(−8) 1.1(−8)

Field connection method
(h1 = 2.0, h2 = 0.2) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 1.1(−4) 1.2(−6) 2.0(−7) 9.5(−7)

2 3.9(−5) 3.1(−5) 3.7(−5) 2.6(−5)

3 3.3(−4) 4.8(−4) 1.5(−4) 4.0(−5)

4 1.0(−4) 1.2(−6) 2.1(−7) 9.4(−7)

Table 2. Errors in conservation of energy (TE polarization) by different field connection methods
for the sinusoidal gratings in case 2.

Field connection method
(h1 = 0.1, h2 = 1.0) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 3.7(−6) 1.1(−6) 2.0(−6) 1.0(−6)

2 � 0 � 0 � 0 � 0
3 � 0 � 0 � 0 � 0
4 6.0(−6) 1.1(−6) 2.2(−6) 1.0(−6)

Field connection method
(h1 = 1.0, h2 = 0.1) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 5.1(−6) 1.9(−7) 3.2(−7) 2.6(−7)

2 7.7(−5) 2.4(−6) 3.9(−6) 1.8(−4)

3 5.2(−4) 5.2(−6) 1.2(−4) 1.8(−5)

4 2.0(−6) 1.2(−7) 3.2(−7) 1.4(−7)

Our experience has shown that when the C method is extended to treat gratings of non-
identical profiles, the error in conservation of energy is a good indicator for the convergence
of efficiencies of individual diffraction orders. Furthermore, the convergence behaviour of
the C method is virtually independent of polarization. Therefore, the convergence behaviours
of the errors in energy conservation that are shown in tables 1–4 are representative for the
convergence of diffraction efficiencies in both polarizations.

It can be easily seen from tables 1, 2 and 3 that method 1 and method 4 converge well
in all three cases, for all combinations ofh1, h2 andγ . As predicted, method 2 fails in all
three cases and allγ values, so long ash1 � h2. Also as predicted, method 3 fails in all
three cases whenh1 � h2 andγ < 1.0. Whenh1 � h2 andγ > 1.0, its also fails in case 2,
the most stringent case. Interestingly, all methods converge well whenh1 � h2, regardless
of the grating case andγ value. Table 4 shows that both methods 1 and 4 coverged for the
triangular gratings. The results for methods 2 and 3 are not included because they failed to
converge for all combinations ofh1, h2 andγ . This failure of convergence is believed to
be related to the slow convergence of the C method for triangular gratings.
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Table 3. Errors in conservation of energy (TE polarization) by different field connection methods
for the sinusoidal gratings in case 3.

Field connection method
(h1 = 0.1, h2 = 1.0) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 3.7(−8) 1.2(−7) 2.0(−7) 2.0(−7)

2 � 0 � 0 � 0 � 0
3 � 0 � 0 6.5(−5) 2.9(−4)

4 1.0(−7) 1.0(−7) 2.0(−7) 2.0(−7)

Field connection method
(h1 = 1.0, h2 = 0.1) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 8.6(−4) 8.5(−4) 2.1(−3) 1.0(−3)

2 2.2(−3) 8.5(−4) 2.1(−3) 1.0(−3)

3 6.2(−3) 1.6(−3) 4.5(−3) 1.7(−3)

4 8.6(−4) 8.5(−4) 2.1(−3) 1.0(−3)

Table 4. Errors in conservation of energy (TE polarization) by field connection methods 1 and 4
for the triangular gratings in case 4.

Field connection method
(h1 = 0.1, h2 = 0.5) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 4.4(−4) 6.9(−3) 8.9(−4) 1.1(−2)

4 6.7(−4) 6.3(−3) 5.3(−4) 1.1(−2)

Field connection method
(h1 = 0.5, h2 = 0.1) γ = 0.0 γ = 0.5 γ = 1.0 γ = 1.5

1 7.6(−4) 5.6(−3) 6.0(−4) 1.4(−2)

4 3.2(−3) 1.8(−2) 5.0(−3) 1.8(−2)

Table 5. Diffraction efficiencies of the sinusoidal gratings in case 1 (γ = 0.0).

TE TM

Diffraction h1 = 0.2 h1 = 2.0 h1 = 0.2 h1 = 2.0
order h2 = 2.0 h2 = 0.2 h2 = 2.0 h2 = 0.2

R, −1 0.2591(−1) 0.5726(−2) 0.8168(−2) 0.2805(−1)

R, 0 0.8379(−1) 0.1754(−1) 0.3718(−2) 0.2240(−1)

R, +1 0.1074 0.1885(−1) 0.1072(−2) 0.1812(−1)

T, −1 0.2433 0.5632 0.5478 0.7186
T, 0 0.3110 0.3110 0.1277 0.1276
T, +1 0.2286 0.8376(−1) 0.3116 0.8568(−1)

In tables 5–8, we give both theTE and TM diffraction efficiency values for the two
gratings withγ = 0 in the four cases. Again,P = 20 was used in the computation.
In figure 5, the convergence of the error in conservation of energy in the firstTE case
of table 5 is plotted against the matrix truncation parameterP . As has been shown in
tables 1–4, methods 1 and 4 have approximately the same convergence rate.

When h1 < h2, the field connection method 2 can be thought of as giving rise to the
generalized Rayleigh–Fourier (RF) method in the sense that it expands the field along a
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Table 6. Diffraction efficiencies of the sinusoidal gratings in case 2 (γ = 0.0).

TE TM

Diffraction h1 = 0.1 h1 = 1.0 h1 = 0.1 h1 = 1.0
order h2 = 1.0 h2 = 0.1 h2 = 1.0 h2 = 0.1

R, −3 0.2512(−1) 0.4026(−2) 0.5903(−2) 0.7557(−3)

R, −2 0.3680(−2) 0.1638(−2) 0.1348(−1) 0.1944(−2)

R, −1 0.4111(−4) 0.2739(−1) 0.1043(−2) 0.3463(−1)

R, 0 0.2982(−1) 0.9792(−1) 0.7318(−2) 0.3035(−1)

R, +1 0.3766(−1) 0.2516(−1) 0.7741(−2) 0.1123(−1)

T, −4 0.5900(−1) 0.6827(−1) 0.1522(−1) 0.7337(−1)

T, −3 0.6359(−1) 0.4309(−1) 0.1517 0.1472(−1)

T, −2 0.6209(−1) 0.1283 0.2634(−1) 0.1220
T, −1 0.2633(−1) 0.2945 0.1184 0.3988
T, 0 0.2733 0.2306(−1) 0.3911(−1) 0.1208(−2)

T, +1 0.1099 0.1271 0.1387 0.9560(−1)

T, +2 0.3667 0.1595 0.4750 0.2153

Table 7. Diffraction efficiencies of the sinusoidal gratings in case 3 (γ = 0.0)

TE TM

Diffraction h1 = 0.1 h1 = 1.0 h1 = 0.1 h1 = 1.0
order h2 = 1.0 h2 = 0.1 h2 = 1.0 h2 = 0.1

R, −3 0.1340 0.1236 0.1099 0.2729
R, −2 0.1432 0.2460 0.3258(−1) 0.4422
R, −1 0.4290(−1) 0.4089(−1) 0.2107(−1) 0.2798(−1)

R, 0 0.5781 0.4566 0.7413 0.1682
R, +1 0.1018 0.1337 0.9517 0.8848(−1)

Table 8. Diffraction efficiencies of the triangular gratings in case 4 (γ = 0.0)

TE TM

Diffraction h1 = 0.1 h1 = 0.5 h1 = 0.1 h1 = 0.5
order h2 = 0.5 h2 = 0.1 h2 = 0.5 h2 = 0.1

R, −3 0.134(−1) 0.242(−2) 0.286(−1) 0.114(−2)

R, −2 0.142(−1) 0.253(−2) 0.125(−1) 0.229(−2)

R, −1 0.378(−1) 0.831(−2) 0.100(−1) 0.360(−2)

R, 0 0.254(−1) 0.211 0.381(−2) 0.348(−1)

T, −4 0.338(−2) 0.459(−3) 0.392(−2) 0.276(−2)

T, −3 0.283(−2) 0.868(−3) 0.828(−3) 0.128(−2)

T, −2 0.876(−3) 0.357(−2) 0.199(−2) 0.360(−2)

T, −1 0.291 0.237(−1) 0.247 0.287(−1)

T, 0 0.291 0.698 0.326 0.876
T, +1 0.320 0.477(−1) 0.362 0.496(−1)

grating profile of larger amplitudeh2 in terms of the eigensolutions of Maxwell’s equations
in a coordinate system generated by a grating profile of smaller amplitudeh1. We then
may say that whenh1 > h2 method 2 gives rise to the reverse generalizedRF method. It
is interesting to observe from tables 1–3 that, as is true for the traditionalRF method for
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Figure 5. Convergence of the error in conservation of energy for methods 1 and 4. The error
is measured by1 = log10 |1 − ∑

ηi |, whereηi are diffraction efficiencies.

which h1 = 0, the generalizedRF method fails whenh1 � h2 for a sufficiently largeh2;
however, surprisingly the reverseRF method always works.

The four grating cases that we have studied here are characterized by the large difference
between the two groove depths in each pair. We designed these cases this way for the
purpose of exploring the limitations of the field connection methods. It is worth mentioning
that when the difference between the groove depths is small all four methods work well.

7. Discussion

The physical, mathematical and numerical analysis that we have presented so far may seem
to be contradictory: assumption A is physically plausible but mathematically questionable.
Furthermore, the preceding section has shown that method 1, which is based on assumption
A, numerically works well. The key to resolving this ambiguity is to understand the role
that matrix truncation plays in the numerical process. Physics and rigorous mathematics
tell us that there is a one-to-one correspondence between the eigensolutions of finite order
number in two different coordinate systems. The corollary of the above statement is that
(in the appropriate spatial domains) there is an equality between the sums of finite number
of up-waves (down-waves) in two different coordinate systems. However, once matrix
truncation is imposed, these relationships are partially destroyed.

Thus, there are at least three options: (i) Insist on having the one-to-one correspondence
even in the case of finite matrix and use the limiting eigensolutions in the numerical solution.
(ii) Abandon the one-to-one correspondence but keep the equality of the partial sums. (iii)
Abandon both the equality of the partial sums and the one-to-one correspondence, and rely
on the covariance of the total field. It is well known that the first option is the Rayleigh
hypothesis. In the third option, bothF (p) and G(p) in two coordinate systems have to
be connected. With matrix truncation, this field connection method effectively creates a
discontinuous numerical interface and introduces numerical coupling between the up-waves
and the down-waves. Thus, although it appears to rest on a solid physical and mathematical
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ground, it is numerically ineffective. The second option, when implemented correctly to
avoid the Rayleigh hypothesis, seems to strike just the right balance.

8. Conclusions

We have carefully examined the validity of assumption A. From a physical point of view the
assumption is reasonable, but from a mathematical point of view it is, in general, invalid.
Without the proper restriction of the spatial domains to which the assumption is applied, it
may lead to the Rayleigh hypothesis.

We have numerically investigated the performance of four field connection methods
to extend the C method to coated gratings of different profiles. We find that both the
half-spectrum method proposed in [4] and the hybrid-spectrum method newly proposed in
this paper have excellent convergence property for all grating configurations that we have
subjected them to, some of which are quite stringent, but the other two methods have much
smaller range of applicability.

This research has raised some interesting questions. For example, why does the reverse
Rayleigh–Fourier method work well for deep gratings, while the Rayleigh–Fourier method
does not? We have conducted this research relying mostly on numerical analysis. An
analytical study is desirable, but it may be difficult. Also, we have only analysed the
convergence of diffraction efficiencies. A convergence study of the near fields may provide
some insights to the complex and subtle issues addressed in this paper.
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