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Abstract . A rigorous modal theory describing the diffraction properties of a
dielectric lamellar grating is presented . The numerical implementation is shown
to be suited to modelling the behaviour of high refractive index gratings . This
suggests that an approach of this type may be successfully applied to the problem
of lossy metallic lamellar gratings .

1 . Introduction
The problem of diffraction by a perfectly conducting lamellar grating has long

attracted interest [1-4] . The simplicity of the grating profile enabled the specification
of modal expansions incorporating explicitly the boundary conditions .

Recently Knop [5] has discussed the problem of diffraction by a dielectric
lamellar grating . His interest arose from the suggested use of surface-relief phase-
gratings for storing pictorial information [6] .

Knop's method relied upon the solution of an eigenvalue problem derived from
the Helmholtz equation and involved the use of a Fourier series to describe the
discontinuous function equal to the square of the refractive index in the dielectric,
and one in air . The differential technique of Neviere et al. [7] encountered serious
numerical difficulties associated with the use of such series for large refractive index
transitions . This was one motive which prompted us to seek an alternative method of
solution, with the potential of being generalized to treat a lamellar grating made of a
metal with a refractive index complex and large in modulus .

The treatment proposed here for the dielectric lamellar grating is a generalization
of the modal treatments appropriate in the infinite conductivity case . The form of the
modes was to some extent suggested by functions occurring in the treatment of the
asymmetric slab waveguide [8] . We find the method developed here for the dielectric
grating to have all the elegance of the classical treatment for perfectly conducting
lamellar gratings .
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2 . Theory
2.1 . Notation and method

Initially we shall consider the diffraction of a P-polarized plane wave of free space
wavelength ), incident upon the lossless structure (shown in figure 1) at some angle
~ . The grating extends from x = - oo to x = + cc and is perfectly periodic of period d.
The incident electric field is defined to be

where ao = k o sin (p, Xo = k o cos 0 and ko = 2it/), . (In this paper the temporal depen-
dence of exp(-itot) has been suppressed from the specification of all field
quantities .) Because of the periodicity of the structure all plane wave fields have the
same phase shift across a period as the incident field (i .e . all fields are pseudo-
periodic .)

E'(x,y)=exp [i(aox - JCo(y - h/2))]3,

Do (VACUUM)

ro = 1

Y- 2
D,

	

D2

r,

	

r,
0

	

C d

Y-2
D 3
r 3

Figure 1 . The geometry of the diffraction problem .

The total electric field E has the same polarization as the incident field and in each
region D. of figure 1 obeys the Helmholtz equations

(02 +k?)E=0 in region D1 ,

where
k;=ko r ; for i=0, 1,2 or 3,

and r ; is the refractive index of medium D i .
(Because of the polarization-independent nature of the problem we can replace

all vector electric fields by scalar fields representing their single non-zero (i .e . z)
component .)

In regions D o andD3 the scattered fields are expressed as series of outward-going
plane waves (Rayleigh expansions [9]) . Thus we write the total electric fields in these
regions as

Ex

	

ex

	

i

	

h2 S +R ex i

	

h2	 1( ,y)= ~ [ P (- Xo(y - / )) Po

	

P p ( 7C P(y - l ))] /d exp (iapx) in Do, (2)

oo

	

1E(x,y)= Y [TPexp(-iq ,(y+h/2))] /d exp(ia Px)
P = _~

(1)

in D3 , (3)
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The dielectric lamellar diffraction grating

27r
aP =dp+ao,

	

(p an integer),

Xp= J(k 2 -ap), for Ia P I < k,,,

=iJ(ap-ko), for la Pl>ko ,

11P-'J(k3 - ap), for Iapl <k3 ,

=zl((XP-k3), for Ia PI>k3 ,

and Spo is the Kronecker delta . The sets {RP } and {Tp} are the reflection and
transmission plane wave coefficients .

The field in the region D1 uD2 is expanded in terms of a modal (eigenfunction)
expansion, each term of which analytically obeys the appropriate Helmholtz
equations, the necessary continuity conditions relating fields on the left- and right-
hand sides of the interfaces :

415

with r = exp (iaod), a nd being the phase shift of the incident field across one period .
Our approach to the problem differs substantially from the method of Knop [5]

and Burckhardt [10] . The individual eigenmodes {e„} used by these authors are a
sum of terms possessing the same continuity and pseudo-periodicity properties as
the field. The Helmholtz equation

axe +
02 e,,

+kor2(x)e„=O

(where r 2 (x) is the square of the refractive index profile of the grating and is expanded
in a Fourier series) is then transformed into an infinite set of homogeneous linear
equations (i .e . an eigenvalue problem) . This system must naturally be truncated to
permit a numerical solution but it would appear that the dimension of this matrix is
highly dependent upon the size of the refractive index discontinuity (i .e . the number
of terms that have to be considered in the slowly convergent Fourier series for r 2 (x)) .

It is clear that this treatment is of a sufficiently general form to encompass
structures having periodically modulated refractive index profiles of arbitrary form .
However, it is our opinion that the method is best suited to continuous refractive
index profiles but is less well suited to the consideration of profiles having
discontinuities .

In contrast, our analysis is specific to this problem in that it only handles step
function refractive index profiles . However, this permits us to describe the
eigenmodes and hence the field in a manner which is more elegant analytically and
less involved numerically .

E(c ,Y)=E(c+,Y); ~E (c ,Y)= -E (c + , Y),

(4 a)

E(d ,Y)=E(d+,Y) ;

and the pseudo-periodicity conditions

xE(O+,Y)=E(d+,Y) ;

a(d ,Y)=aE(d+, Y),

(4b)t (0+,Y)=aE(d+,Y)
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L. C. Gotten et al .

Our eigenmodes each involve only a single term (cf . the series of Knop's
approach) and the resulting eigenvalue problem necessitates only the solution of a
single transcendental equation . (Note that at no stage in the calculation of our modes
is any truncation of infinite series required .) It may also be shown that the lossless
nature of the structure gives rise to orthogonal modal functions, thereby facilitating
the application of the method of moments [11] to solve the diffraction problem .

2.2. The eigenvalue problem
2.2 .1 . Separation of variables

We wish to solve the Helmholtz equation of the form

a2E a2 E
ax z+ayz+korz(x)=0, 0<x<d,

where

f
r l , 0<x<c,

r(x) =
r 2i c < x < d,

and E satisfies the conditions given in equations (4) . Since the geometry of the
problem permits a separation of variables, i .e .

we obtain for u

and for v

where

and

E(x, y)=u(x)v(y),

u"+kiu=µ zu, 0<x<c,

u"+kzu=µ zu, c<x<d,

v" +,u z v = 0 .

	

(6)

Equations (5) can be rewritten in the more concise form

u"+~2S(x-c)u= -/3 2u,

	

(7)

z = kz - kz
z

	

1

~z

	

z - z=k
iµ

-
S(x)

	

0, for x<0,

1, for x10 .

The boundary conditions imply that u and u' are continuous at x = c and pseudo-
periodic so that

iu(0 )=u(d- ),
2u'(0+)=u'(d-),

where i = exp (Mod) .

(5)

(8)
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Equations (7-10) define an eigenvalue problem, and as we shall see in §2 .2.2
solutions exist only for a countably infinite discrete set of real eigenvalues (f 2 ) .

Let 0, 0 be two linearly independent solutions of equation (7) which are
continuous and continuously differentiable at x = c such that

The dielectric lamellar diffraction grating
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We now set

u(x) = A0(x) +Bc(x)

	

(16)

and apply the pseudo-periodicity constraints (9) and (10) . Thus,

iA=AO(d)+Bt/r(d),

TB = AO'(d) + Bi/r'(d) .

For this homogeneous set of linear equations to have a non-trivial solution we
require that

[(0(d) - r)] [~'(d) - r] -O'(d)c/r(d) = .

Using equation (15) this becomes

,r[0(d)+i'(d)]=1+r2,

that is

0(d) + i/r'(d) = 2 cos (ao d),

	

(17)

using the definition oft . On expanding equation (17) explicitly (using equations (12))

0(0)=1, >/r(0)=0,
(11)

0' (0)=0, ii'(0)=1 .

Then

0=
cos ($x), 0 x 5 c,

(12)

and

cos (ac)cos[y(x-c)]-~sin(fc)sin[y(x-c)],
Y

c<x~d

1

fir=

sin (ax), 0'< x <' c,

(13)
-sin ($c)cos[y(x-c)]+ Ycos(fic)sin[y(x-c)], c<,x<d,

(14)where y 2 =fl2 +C2 .

Since 0, t/r satisfy equation (7), the wronskian

(15)

W(0, fir)=00r'-0'o

is constant and so from equations (11)

00, -0'i _-1 .
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L. C . Botten et al .

we obtain the eigenvalue equation

(1 c) cos (yg)-2
(#2

#T
T2)
yz)cos

	

(Qc) sin (yg)=cos (a o d),

	

(18)

where g=d-c. We choose $ to be that root of $2 having a positive real part .
For any eigenvalue /3 satisfying (14) and (18) then

A

	

i/i(d) _ i - t/r'(d)
B i-O(d)

	

O'(d)

Also the solution of equation (6) may be written as

v(y) = a sin (µy) + b cos (µy),

where t is specified in equation (8) . Thus the separable solution has the form

E(x, y) = C-O(x)+O(x)) (a sin (ty) + b cos (µy)) .

Note that when =0, then #=y and so equation (18) degenerates to

cos (fid) = cos (ao d),

that is

/3= 2d +oco

for any integer p, which is simply the classical grating equation .

2.2.2 . Properties of the eigenvalue problem
In this section we shall discuss
(i) the self-adjoint nature of the boundary value problem specified in equations

(7)-(10) ;
(ii) the distribution of the eigenvalues ; and
(iii) the completeness of the eigenfunctions .

(i) Self-adjointness
We define the operator

L
= [dz

	

l
dxz +C2S(x-C)]

and note that for any continuously differentiable functions f, g obeying the boundary
conditions (9) and (10)

J
d (gLf-fLg)dx= ~ d (g~f„+~zS(x-c)f]-f[b„+ z S(x - c)g])dx,
0

	

o

=[gf'-fg']o (since Sz is real),

=0

	

(by the boundary conditions) .

In the above, the bar denotes complex conjugation .
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Hence L is a self-adjoint operator and consequently has real eigenvalues ($ 2 ), and
eigenfunctions corresponding to distinct eigenvalues are orthogonal .

(ii) Distribution of eigenvalues
It may be shown [12] that D(f32) = 0(d) + O'(d), taken as a function of (3 2 always has

behaviour of the type illustrated in figure 2 . Firstly D($2) is continuous. Secondly,
D($2) > 2 for /3 2< some number Q. (It may be shown that g2'> -C 2 .) For # 2> g2,
D(f3 2 ) oscillates infinitely often ; its maxima always being greater than 2 and its
minima always being less than -2 . D(f1 2 ) is always monotonic between values of #2
where D(f3 2)= -2 and D(132)=2 . Hence the eigenvalue equation (18) always has
infinitely many discrete solutions $i, $i, #3, . . . with #„ --* oo as n-* oc . It may also be
shown that provided ~2 0 0 there is only one eigenfunction u,„(x) corresponding to
any eigenvalue $,Z,, (except possibly at certain isolated points if 2= ± 1) .

The dielectric lamellar diffraction grating
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AOL

100'W 200

	

300

Figure 2 . Plot of the function D($2 ) . The eigenvalues correspond to points where
D(J3 2 ) = 2 cos a od. In the first case shown, at least three eigenvalues occur for P'<0.
In the second case only one eigenvalue occurs for Q2 < 0 while the first four eigenvalues
for ,82 > 0 are shown .
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(iii) Completeness
It can further be shown [13] that the countably infinite set of eigenfunctions {Um}

forms a complete set. That is to say, any function that is continuous, differentiable
and obeys the pseudo-periodicity condition may be expressed as a linear combi-
nation of the {um }, i .e .

z(x) =L, Zmum(X),
m

where

zm= J d z(x)um(x) dx
0

such that the {um } are normalized according to
('d

f lu mpdx=1 .
0

Hence it follows that the general solution for the total electric field E can be
expressed in the form

E(x, y) _ Y (am sin (µy) + b. cos (yy))u (x),
m

which will now be matched to the plane wave fields at the boundaries y= ±h/2 .

2 .3 . Method of moments
With the form of the fields in all regions having been prescribed, we can now

solve the diffraction problem by applying the method of moments . The continuity of
the electric fields across the interface at y=h/2 may be expressed by

1
[Rp +Spo]

Jd
exp(iapx)=E(am+bm)um(x), for 0,x,d,

	

(19)
P

	

m

from which we obtain a system of equations of the form

a„ +bn =Yn

	

(RP +apo)Jp n , Vn

	

(20)
p

by multiplying equation (19) by u,, and integrating over the interval [0, d] . In the
above

an = an sin (µnh/2),

bn = b n cos (µ n h/2),

and
1

	

d

Jpn =
~d

exp (-iapx)un(x) dx .f 0

The system of equations (20) may be cast in the more concise formt

a +b*=JH(R+F),

	

(21)

t In equation (21), and in what follows, the superscript `H' denotes the hermitian
conjugate of a matrix .



D
ow

nl
oa

de
d 

B
y:

 [T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft]
 A

t: 
12

:1
7 

11
 D

ec
em

be
r 2

00
7 

The dielectric lamellar diffraction grating

	

421

where a* = [a„ ] , b'* = [b„] , J= [JP„ ] , R = [RP] and F is a vector whose entries are
FP = 6p0. Similarly, continuity of E at y= -h/2 gives

-a*+b*=J"T,

	

(22)

where

where

T = [TP] .

Applying the continuity of 8E/ay at y=h/2 we have

YiX P[R,,-5 ] I- exp (ia px)_Y(D ima,'*„+D2mb*)um(x), for 0,<x,<d,

	

(23)
P

	

m

pP =
Xo

IRPI 2

Dim = µm cot (hmh/2 ),

D2m = - µm tan (µ.h/2).
From this we derive a system of equations,

ix y [R9 - 6,0 ] _Y (D imam +D2mbm)JQm,
m

by multiplying equation (23) by 1/Jdexp(-i(X,,x) and integrating over [0,d] .
Expressing this in matrix notation reduces the above equation to

R=F-ix -1J(D,a*+D2 b*),

	

(25)

where
x = diag (x P ),

D, = diag (D,m),

D2 = diag (D2m ) .

Similarly at y= -h/2 we derive

T=iri -1J(D,a* -D eb*),

	

(26)

where j = diag (,I,) .
Substituting equations (25) and (26) into (21) and (22) we arrive at a coupled pair

of linear equations in the {am} and {b„,}

zJ"x- 'JD,+I iJHx -1JD2 +I a'* _2 J"F

	

(27)
-iJ"ri -1JD,-1 iJ"ri -1JD2 +I] [b*] - C 0 ]

which is solved by standard elimination techniques . In equation (27), 1 denotes the
identity matrix . Reconstruction of the reflected and transmitted amplitudes takes
place using equations (25) and (26) . Propagating order efficiencies are then given by

(24)
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and

Pp -T-qpl TPI 2
Xo

2.4. Differences in the formulation of the S-polarization problem
The modifications arise because of the different forms taken by the boundary

conditions for this polarization . For this problem, the magnetic field vector is aligned
with the z-axis and we express the boundary conditions in terms of the scalar
magnetic field H as follows : bothH and 1/r 2 8H/tin are continuous at each interface
and are also pseudo-periodic . Furthermore, the appropriate form of the wave
equation is

a 1 OH] 0 C 1 OHl
ax k2 ax J + ay a2 ay

+H=o,

	

(28)

where k2 =kor2(x) .
This may be written in the form

~ 2 + ~ +k2H=k2 ~H C 28(x-c),

a non-homogeneous Helmholtz equation with the distributive term on the right-
hand side representing the discontinuity in the normal derivative of H at x=c.

We shall now outline the essential changes to the eigenvalue problem . Again, we
assume a separable solution

H(x, y) = u(x)v(y)

of the wave equation and obtain

1

	

'
k2 k2	 U, + C 2 S(x-c)u= - f l u,

	

(29)

VII +lt 2v=o,

	

(30)

where
2 = kz

	

2

The boundary conditions imply that

u(c- ) =u(c +) ;

(d- ) =u(d+ ) ;

with pseudo-periodicity giving

iu(0+)=u(d+) ;

2 (c )=z u (c + )r l

	

r2

r u (d ) 2 u (d+)
2 r l

2iu'(o+)=zu(d+ ) .
r l

	

r l
(32)

Now defining 0, tli as the two linearly independent solutions of (29) obeying the
same initial conditions as given in equation (11) and having the properties of u given
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in equation (31) we have that

cos (fix),

	

for 0 5 x <, c

and

sin (#x)

	

for 0,<x<,c

O(x) _

	

( 34)

[y(x-c)]
+ri

sin ($c) cos

	

Y
cos (#c) sin [y(x -c)] for c S x d

where y 2=#2 +C2 .
From the differential equation (29) and the initial conditions on 0 and 0 (equation

(11)) it may be shown that the appropriate wronskian is

O(x) _

Using the basis functions 0, 0 we now construct u in the form

u(x) = A0(x) + BO(x) .

From the boundary conditions (32) the following homogeneous set of equations

TA =AO(d-)+Bt(d-)

ri TB= 2 [AO'(d-)+B>L'(d-)]

are obtained, and for these to have non-trivial solutions we require that

[0(d)-t]C20'(d)-Zi]-I(d ) 2 0'(d-)=O,r2

	

r l

	

r2

or more simply
2

0(d-)+ r2
0'(d - ) = 2 cos (aod),

	

(36)
r22

using the result of equation (35) . Equation (36) maybe expressed in the more explicit
form

2

	

2
cos ($c) cos (yg) - 2 (Y -

+
r2, -

sin ($c) sin (yg) =cos (aod)

	

(37)

-the S-polarization eigenvalue equation which has properties similar to those
mentioned in part (ii) of § 2.2.2 . Thus in region D 1 uD2 the field H is expanded in
terms of functions of the form

u(x)v(y)
=CBO(x)+O(x) J [a sin (µy) + b cos (µy)]

r2
cos (PC) cos [y(x-c)] -~i sin ($c) sin [y(x -c)],

	

for c ~x ~d

r2

r l

(33)

W(0,~)=r2 ~x)(0c'-0* = z.

	

(35)
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where

by

A

	

t/r(d- )

	

tr2/r2-O'(d-)
B 'c-O(d- )

	

0'(d-)

We now demonstrate the self-adjoint nature of the differential operator L defined

l
Lu=k2 1k2 u' I +~2S(x-c)u .

Consider the following integral for any functions f,g obeying the same boundary
conditions as u :

f
d	 1

o k2x
gLf-fLg] d

d 1

	

~2

	

)

	

1

	

~z

= J o~ k
g+k2S(x-c)jg} -{Ck2g~ f+ k2S(x-c)94A,

1

	

1

	

dd
k2fg k2

	

o (since C2 is real),

=0

	

(by the boundary conditions) .
Thus L is a self-adjoint operator for the inner product defined with respect to the
weight distribution 1/k2(x) and hence L has real eigenvalues (/3 2 ). Its eigenfunctions
corresponding to distinct eigenvalues are orthogonal with respect to the above
weight distribution .

It may also be shown by an extension of methods given in [13] that the
eigenfunctions form a complete set and so we expand H in region D 1uD 2 in the
series

H(x,y) =~ [am sin (µ.y)+bm cos (µ'my)]um(x) .m

The solution of the diffraction problem then proceeds by the method of moments
with the fields in regions Do and D 3 once again being expressed in terms of the
Rayleigh expansions (equations (2) and (3)) . The analysis of § 2.3 is unaltered except
for the redefinition of the inner product Jp„ which now becomes

I

	

d IJp„=
Jd o r 2 (x)

exp (-iapx)u„(x) dx,

and the replacement of j by rl/r3 .

3 . Verifications and applications of the theory
The formalisms for P- and S-polarizations were numerically tested using the

reciprocity theorem and also the symmetry properties discussed in [14] . The above
criteria were satisfied to high accuracy . In addition, the results were compared with
the graphs given by Knop [5], again with good agreement being observed .

It was decided to test the accuracy of the theory in the region of strong diffraction
anomalies, not only for weakly reflecting materials (such as glass) but also for the case
of a strongly reflecting material (having a refractive index of 5 . 0) . The results of this
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study are shown in figures 3-8 . The convergence of results with the increasing
number of modes and the numerical accuracy of field matching were all satisfied to
much better than 1 percent for all points on the curves . The criterion of conservation
of energy supplies no convergence information at all since it may be shown that it
holds analytically within the formalism .

Figures 3 and 4 illustrate the behaviour of a glass refraction grating used with
normally incident light . Both the total energy transmission and the energy carried by
the zeroth transmitted order are shown . It is interesting that the grating is more
strongly diffracting (i .e . disperses more energy) for P-polarization than for
S-polarization . Also the diffraction anomalies are much stronger for the former
polarization . The P-polarization anomalies are dark bands of the type first observed
for reflection gratings by Palmer [15] . It will be noted that for refraction gratings,
Wood anomalies occur at differing wavelengths in air and in the substrate . For the
pth order in air the Rayleigh wavelength is

d(+ 1 -sin (4))/p,

	

for all p > 0,
(38)

while for the pth order in the dielectric substrate of refractive index r 3 it is

d(+ r3 -sin

	

for all p > 0,
.1R=

	

(3 9 )
d(+r3 +sinp), for all p<0 .

For very long wavelengths the energy transmitted in both polarizations tends to the
geometrical optics limit of 96 per cent .

For the case of a transmission grating in glass (see figures 5 and 6) the diffraction
anomalies in the two polarizations take the form of dark bands . The S-polarization
anomaly is the sharper of the two, as is generally the case with diffraction gratings . At
long wavelengths the transmittance tends towards unity, since the incident wave no
longer `resolves' the grating structure .
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Figure 3 . The total transmitted energy (solid line) and the energy transmitted by the zeroth
order (broken line) are shown as a function of normalized wavelength (2/d) for normally
incident light (4=0°) . The grating parameters are c/d=0 . 6, h/d=0. 4, r 1 =1 . 0,
r 2 =r 3 =1 . 5 . P-polarized light .
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d(+ 1 +sin (0))/( -p), for all p<0,
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Figure 4 . As for figure 3, but with S-polarized light .
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Figure 5 . As for figure 3, but with r 2 =1 . 5, r3 =1.0 .
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Figure 6 . As for figure 4, but with r2 =1 . 5, r 3 =1 .0 .
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Figure 7 . As for figure 3, but with r 2 = 5 . 0, r3 =1 .0. (To simplify the figure, the zeroth-order
energy transmission curve has been omitted .)
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Figure 8 . As for figure 7, but with S-polarized light .

4. Conclusions
The theoretical method outlined here represents the generalization of the

classical modal formalisms for perfectly conducting lamellar gratings . It has been
developed as part of a process designed to lead to modal methods for lossy lamellar
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The behaviour of the high refractive index transmission grating of figures 7 and 8
is very much more complicated than that of the low refractive index structures of
figures 3-6 . The total transmitted energy in both polarizations undergoes a
multiplicity of sharp resonance anomalies . We attribute these anomalies to the
excitation of `leaky' resonant cavity modes of the type discussed by Hessel and Oliner
[16] . It is to be noted that the consequence of increasing the refractive index of the
dielectric is an increase in the reflectance of the side walls of the leaky cavity and thus
in the Q-factor of its resonances . Also because of the large value of r 2 , the cavity can
support a large number of `propagating' modes (i .e . modes for which µm is real) and
these resonate in the vicinity of their cut-off wavelengths . Further work devoted to
understanding the detailed behaviour of these resonance anomalies is warranted .
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gratings and integral methods for bimetallic gratings (see [17]) . Work has already
commenced on these extensions and it is hoped to report on these at an early stage .
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On presente une theorie modale rigoureuse decrivant les proprietes de diffraction d'un
reseau dielectrique lamellaire . On montre que la methode numerique utilisee convient pour
modeliser le comportement de reseaux a haut indice de refraction . Cegi suggere qu'une telle
approche peut etre appliquee avec succes au probleme des reseaux metalliques lammellaires
presentant des pertes .

Es wird eine streng formale Theorie der Beugungseigenschaftern eines dielektrischen
Lamellengitters prasentiert . Die numerische Durchfiihrung erweist sich als geeignet, das
Verhalten von Gittern holier Brechungsindizes modellmallig zu beschreiben . Dies deutet an,
dal3 eine Naherung dieser Art auf das Problem verlustbehafteter metallischer Lamellengitter
erfolgreich angewandt werden konnte .
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