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Abstract . A rigorous modal theory describing the diffraction properties of a
finitely conducting lamellar grating is presented. The method used is the
generalization to lossy structures of an earlier formalism for the dielectric lamellar
grating . Sample results of the method are given, demonstrating its accuracy and
its ability to deal with problems intractable by the widely used integral- equation
formalisms of diffraction grating theory .

1 . Introduction
In a previous paper [1], we presented a new modal formalism for the diffraction

properties of the dielectric lamellar diffraction grating . The lossless nature of the
structure led to an expression of the diffraction problem in a self-adjoint form-i .e .
there existed a complete set of orthogonal modes . In this paper, we shall generalize
the modal formalism to encompass the presence of loss (or energy dissipation) in the
grating material, even though the introduction of loss into the diffraction problem
renders it non-self-adjoint . To our knowledge, this is the first rigorous modal
formulation for diffraction by a lossy structure .

We present a concise exposition of the generalized theory, relying, for the sake of
brevity, upon the material presented in [1] . We emphasize the differences which arise
when the refractive index of the grating material is made complex . We show the
validity of our theory using numerical results satisfying physical criteria such as
reciprocity and the conservation of energy . We give results indicating the adequacy
of the formalism for dealing with extreme grating profiles, e .g. those having depths as
large as several hundred times their period .

2. The formalism
2.1 . Notation and method

We consider the diffraction of an S-polarized plane wave of free space wavelength
2 incident at some angle 0 upon the structure shown in figure 1 . The various
parameters of the grating are defined here exactly as in [1], except that here we admit
the possibility that the refractive indices r; of the regions D . for i =1, 2, 3 are complex .

00303909'81 ;2808 1087 502 .00 C 1981 Taylor & Francis Ltd
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Figure 1 . The geometry of the diffraction problem . In the P polarization case shown, the
z component of the total electric field must be continuous and have a continuous
normal derivative at any boundary . This function and its normal derivative must also
be pseudo-periodic, as in (31) and (32) of [1] .

For the case of S polarization, the incident magnetic field is aligned with the z axis
and the total magnetic field and its normal derivative divided by the square of the
refractive index (of the medium in question) are continuous at all boundaries . These
quantities must also be pseudo-periodic .

The spatial part of the total magnetic field H has only a single non-zero
component along the z-axis (i .e . H =Hi) and in regions Do, D 3 obeys the Helmholtz
equations

(V2 + k0
2)H=O in D o

(V2 +k 2)H=O in D,

where ko = 2it/2 and k3 =kor 3 ,
In Do , we express H in terms of the plane-wave or Rayleigh series

(1)

H(x,y)= Y [exp( - ixo(y - h/2))S P,o+R P exp(iX P (y - h/2))]e,(x),

	

(2)
P=- 0

where

ep(x) = exp (ia;x)/.Jd,

aP = ao + 2mcp/d,

oc o =ko sin 4

Xo =ko cos cp

/(k2 -aP) for IaPI < ko

for I aPI > ko

and 6P,o is the Kronecker delta symbol . Similarly, in region D3 ,
X

H(x,y)= Y TP exp(-irjP(y+h/2))ep(x),

	

(7)
P= - X

(3)

(4)

(5)

(6)
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where

r1n=,l(k3 - aP),

	

(8)
the imaginary part of rlp , Im (qp ), being chosen to be non-negative . The sets
{R p, TP I p = 0, + 1, + 2, . } are the sets of reflection and transmission (absorption)
plane wave coefficients .

In the grating (D 1uD 2 ) we expand the field in an eigenfunction series, each term
of which obeys the appropriate wave equation and the necessary continuity and
pseudo-periodicity conditions stated in the caption of figure 1 .

2.2 . The eigenvalue problem
We proceed in the manner of § 2 .4 of [1] to solve the wave equation within the

grating region :

where

k=kor(x),

	

(10)

and r(x) is a periodic function defined on its period [0, d] by
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a 1 OH] a 1 aH
Ox [k2 ax + ay Ck2 ay +H=O,

l r

l

r 2

for 0<x<c

for c<x<d.

The solution is written in the separable form

H(x, y) =u(x)v(y),

	

(12)

(9)

The solution of the eigenvalue equation (13) subject to the boundary conditions (31)
and (32) of [1] is of the form

u(x) =O(x)+ awt/i(x),

	

(19)

and we derive

k2 1
k2

u' + 25(X - C)U=- Fl 2U,
fl 2 U, (13)

v"+µ2v=O, (14)

where the prime denotes differentiation,

(15)µ 2 =ki -
#

2 ,
y2 =k2-k2 (16)

k1=korl,

}

(17)

and

k2 = korz,

c0 for x <
S(x - c) = (18)

1 for x > c .
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where @(x) and tJ(x) are two linearly independent solutions of (13), given in equations
(33) and (34) of [1], and

(20)

subject to the non-linear eigenvalue equation

cos (/3c) cos (yg) -2 (r # + r --) sin (/3c) sin (yg) =cos (a o d),

	

(21)

in which

y2- 2 +~ 2 .

In (20), z is a period phase-shift associated with the incident wave :

z=exp (iaod) .

	

(23)

2.3 . The adjoint problem
Equation (13) may be rewritten in the form

Lu = - /3 2 u,

	

(24)
where the differential operator L is given by

L=k 2

d

(

1 d)
dx/I+~ZS(x-c) .

	

(25)

The refractive indices r l and r2 being complex, ~2 is now complex, and so the
operator L loses the self-adjoint property demonstrated in [1] . Consequently, its
eigenfunctions {u} no longer form an orthogonal set . However, in order for the
solution of the field equations to proceed by the method of moments as in [1], it is
essential to have a set of functions, say {u + }, orthogonal to the {u} . To obtain the
{u + } we introduce the operator

w=
i-O(d- )

O(d- )

d(1 d

)dxk2
dx//+~ZS(x-c)

(22)

(26)

(where the bars denote complex conjugation) . We then consider the eigenvalue
problem

L +u+ = - (/3 + ) 2u + ,

	

(27)

subject to the constraint that u + and du+

	

are continuous at x = c, d and pseudo-

periodic between x = 0 and x = d .
We will now show that L + is the adjoint of L, with respect to the inner product of

two functions f(x) and g(x),

<.f, g> = J o k21x)J(x)g(x) dx .

	

(28)

The choice of the weight function (1/k 2(x)) in (28) is a natural consequence of the
forms (25) and (26) of the differential operators L and L + .
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Consider the quantity

Q1=<u + , Lu> - <L +u + , u>

= J o k2 f-ii+[k2(1 )'+ ~ 2S(x-c)u]-u[k2
Ck

2 u + '~ + CZS(x-c)u+~~ dx .

This simplifies to

Q1-
fOCu+Ck2u,l -u(k2u+'~]dx,

Q 1 =0

because of the pseudo-periodicity conditions satisfied by u and u + . As asserted, L + is
the adjoint of L:

<u + , Lu> =<L +u + , u> .

	

(29)

2 .4 . The relation between the eigenvalue problem and the adjoint problem
In a manner similar to that outlined in § 2.2, and in § 2.4 of [1], we proceed to solve

equation (27) . We write
u+(x)=0+(x)+co+0+(x),

	

(30)

where 0 + (x) and i/r + (x) are two linearly independent solutions of (27) obeying the
boundary conditions at x = c specified in § 2.3 and the initial conditions

0+(0)=1, 0+'(0)=0
'+(0)=0, i+ '(0)=1 .

The explicit forms of these functions are
cos (#'x), 0 < x < c,

0+ (X)=
cos(fl + c)cos(y+ (x-c))-CY1

/ 2+
sin(f + c)sin(y +(x-c)) c<x<d ;

where

+ sin (#+x), 0 < x < c,

\z

y

+
~+ sin (/3+c)cos(y+(x-c))+

(Y112 / f+

xcos(a+ c)sin(y + (x-c))], c<x<d,

(y+)2=(#+)2+(~)2 .

1

(32)

(33)

(34)

The constant co + in (29) is determined by the pseudo-periodicity constraints and is

+
r-B+ (d- )

w =		 (35)
+(d )
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The same constraints also yield the non-linear eigenvalue equation for the adjoint
problem :

We saw in [1] that for the lossless lamellar grating, there exists a countably
infinite set of solutions /3 (n = 1, 2, 3 . . . . ) of the eigenvalue equations (21) and (22) . It
may be shown that, as the imaginary part of a refractive index r i (i = 1, 2) is increased
from zero, the eigenvalues an move continuously away from their positions on the
real axis into the complex plane (see figure 2), and that all the complex eigenvalues
may be found by following the paths illustrated, starting from real eigenvalues . As
the real part of the eigenvalues fan approaches infinity (that is, as n-* x) the complex
eigenvalues approach the real eigenvalues of the simpler problem, consisting of the
differential equation (13), with ~ 2 =0, and the boundary conditions (31) and (32) of
[1] . Further, the eigenfunctions {u,{ approach the eigenfunctions of this simpler
problem .

Let us now consider the question of orthogonality of the eigenfunctions fun} with
their adjoint functions {u„} . Let u n be an eigenfunction of L corresponding to an
eigenvalue /3n, as in (24), and let u„ be an eigenfunction of L + corresponding to an
eigenvalue ($,„ ) 2 , as in (27) . From (29), we see that

<L+ nm , un ) = <um , Lu n>

or
/~+2

	

+

	

/~2

	

+
-I'm \um,un/ =- Nn\um, nnX

which (using (38)) implies that

(/gym - Nn)\um , un / = 0.

	

(42)

In other words, the sets of eigenfunctions {u„ } and {un } are orthogonal with respect
to the inner product defined in (28), and may be normalized by setting

n, , u n >=1 .

It may be shown, using arguments similar to those in [2, Chap . 12], that the
eigenfunctions {u n } are complete in the sense that any continuous and piecewise

1 r 2 +

	

r 2 -+ 1
cos (P+ c) cos (y + g) -2

(
~+ +

rz
+) sin (/3+ c) sin (y +g) =cos (a od), (36)

with

(Y+ ) 2
= (/3+ )2 + (~) 2 . (37)

Comparison of (36) and (37) with (21) and (22) reveals that

fl + (38)

Y + =Y, (39)

0+ (x) = 0(x) (40)

and

/ + (x)= kx) . (41)

2.5 . Orthogonality and completeness
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r

A* A*

-5

L

20

	

40

	

6 10I II'I\I IRe(p)

Figure 2 . Evolution of the first 20 complex eigenvalues /3,, with increasing imaginary part of
r 2 from 0. 0 to 1 . 0, for the S polarization diffraction problem of table 1 .

differentiable function f(x), satisfying the boundary conditions (31) and (32) of [1],
may be expanded as

f(x) = Y anun(x),
n=0

where

a n =<u„,f> .

Thus it follows that the general solution for the total magnetic field H can be
expressed in the form

H(x, y) = Y (a„ sin (µ,y)+bn cos (µny))u„ (x)

	

(43)
n

which will now be matched to the plane wave solution at y= ±h/2 .

2.6. Method of moments
With the form of the fields now prescribed for all regions, we can proceed to solve

the diffraction problem using the method of moments . The continuity of the
magnetic field across the interface y=h/2 is given by

~(Rp +Bpa)ep (x)= Y (a„*,+bm)um(x) for 0< ; d,

	

(44)
P

	

m
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where
am = am sin (µ.h/2),

bm =bm cos (p h12) .

We multiply the left- and right-hand sides of (44) by

un(x)lk2(x),

and integrate with respect to x over a period, to obtain

an +bn = (RP +SPO)KP„ for n=1,2,..., (45)
P

where

K

	

a	 1 e (x)u„(x)dx .

	

(46)P„

	

0
k

(x)
P

The system of equations (45) may be more concisely written as

a*+b*=Ki'(R+F),

	

(47)

where

k2(x) ay

where a*=[an], b*=[bn], K=[KP„], R=[RP], F is a vector whose entries are
FP =bpO , and the superscript . is used to denote the hermitian conjugate of a matrix .
Similarly, the continuity of H at y=-h/2 gives

- a* + b* = K* T,

	

(48)

where T-[TP] .

Next, consider the boundary condition

1 8H

This is

1 8H
2

y=h/2- ko ay y=h/2+

koY ixP(RP-8PO)eP(x)=L (DImam+D2mbm)k2~x \ for 0<x<d,

where

Dim =µm cot (/1mh/2)

ix g(R - 8qo)=ko Y (D1mam+D2mbm)Jgmq

	

for q=0, ±1, ±2, . . .,
M

a

	

1
Jqm = 0 k2(x)e q (x)um(x) dx .

(49)

(50)

D2m = -tm tan (µmh/2) .

We multiply both sides of (50) by eq(x) (for some integer value q) and integrate over a
period to obtain

(52)

(53)
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Equations (52) are, in matrix form,

R=F-ix -1J(D la*+D 2b*),

	

(54)

where
x = diag (Z,/k2),

D1=diag (D 1 .),

D2 =diag (D2,,,) •

Similarly, at the interface y = -h/2 we find that

T=irk -1J(D la*-D2b*)

	

(55)

where rl=diag(r/ p/k3) .
We now substitute (54) and (55) into (47) and (48) and arrive at a coupled pair of

linear equations in the a,*„ and the b~*, :

I+iK"'x-1JD1

	

I+iK*x-1JD2I [ ]

	

K~'F
= 2

	

(56)
-(I+iK"q-1JD,) I+iKWq - 'JD2

	

b*

	

0

where I denotes the identity matrix of appropriate dimension . The infinite system of
equations (56) is truncated and solved numerically by a standard elimination
technique. The form of (56) gives rise to a matrix which is numerically stable under
inversion . Once the a* and b* are known from (56), they can be substituted into (54)
and (55) to yield the reflection and transmission coefficients {RP, Tplp=0, ±1,
±2, . . .} .

2 .7. The energy balance
As stated (without proof) in [1], the criterion of energy conservation is not

available as a test on the accuracy of numerical results for the dielectric lamellar
grating, since it is analytically satisfied (independently of truncation errors) by the
modal formalism. We will now show that this criterion can furnish information
concerning truncation errors in calculations for the lossy lamellar grating . In
considering this question we must look at both the absorption of energy within
various regions and the flux of energy across various surfaces .

The component of the flux of energy perpendicular to the surface of the grating is
the y component S,, of the Poynting vector, where

S,,= 2 i Im(HV2
OH),

	

(57)

v denoting the complex refractive index of the medium in question :
1

	

for y > h/2

v(x, y) _ (x) for -h/2 < y < h/2

for y < -h/2,

for all values of x . We are thus led to consider the following integral quantity for
various ranges of y :

f
e

	

1 8H

	

1 8H
P(y)=

0
CHv2 ay -Hv2 ay dx . (58)
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Note that Re (XP ) is non-zero only for a finite set of integer
propagating orders in free space) .

In the dissipative grating region (-h/2<y<h/2), P(y) ceases to be independent
of y, and so we consider

AP=P[(h/2)-] -P[( -h/2) + ]

	

(60)

and

1

	

1
Q2=

J

	

div CHr2(x) grad H- H Y2 (x) grad H dA,
D, VDZ

the area integral being over the grating region 0 < x < d, -h/2 < y < h/2 . AP and Q 2
are identical physically, as is shown by a simple application of Green's theorem in
conjunction with the definition (59) of P. However, as we shall now show, they are
also analytically identical, their equality not being affected by the errors which arise
in fields when the infinite modal series (9) is truncated to a finite sum .

Let us now consider the ohmic loss Q 2 within the grating . Using (9) in (61), we
obtain

	 1	1
Q2=

ft

D,,D2[ 21x) i2(x)
	 ] gradHgrad fl dA

•

	

h12
_

	

(ti. sin µ,,,y + bm cosµmy)(an sin y ny + b,, cos it ny) dy
mn

	

-h/2

In free space (y > h/2), P(y) is independent of y and has the value

P(y) = 2i [ Y Re (XP)IRP I 2- Xo] .

	

(59)
P

values of p (the

Hence,

('h/2

h
+µmµ.

	

(ii. cos µmy -bm sin ft y)(a n cos yj- bn sin y ny) dy

f
d

0

/2

X
,~o

u;„(x)u ;,(x)C	2(
) - ( )]

dx'
Y X) k2 x

r,,(x) u ;n(x) dx= -
J 0

iUX)Crz(X)]

	

(by pseudo-periodicity)

=
Jd

o um(X)un(x)Ck0 - r
	 (nx)

J
dx

X
J

o um(x)un(x)C r 2(x) - r 2(x
)
J
dx .

	

(62)

The first x integral occurring in (62) may be simplified using integration by parts .
We consider

{from 13) .

f 0 u
;n(x)u'

(x)[r2(x) -

r2(x)1
dx=

f0
um(X)un(x)1r(x) - r(x)] dx

	

(63)
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On substituting (63) into (62) and performing the y integrations, we arrive at

_

	

a 1
Q2=2E (Dlnaman+D2nbmbn)

	

r2(x) um(x)un(x)dx
Mn

	

0

- (Dlmaman +D2mbmbn) J o
r2(x) u

m(x)un(x) dx .

	

(64)

We now turn to expression (60) . Using

H(x,y=+h/2)_ (±am+bm)um(x)
m

and

OH
-(x, y= ±h/2)= Y (D lnan + D2nbn)un(x' ),Oy

	

n

elementary manipulations enable us to derive

AP=Q2 .

	

(65)

At no stage during this demonstration has it been necessary to specify the range of the
summation indices m and n . In other words, (65) holds whether the quantities AP
and Q 2 are evaluated for the physical fields or their truncated representations .

The situation is different when we compare the quantity P(y) for y =h/2 + and for
y=h/2- . Equation (59) can be written in the form

P(h/2+ ) = 2i Im [ Y ixp (Rp - Spo)(Rn + 6P,)] .

	

(66)
P

In (66) and in what follows, all summations without explicit indication to the
contrary will run over the truncated set of values occurring in any computer
implementation of the theory . Now, from (52)

P(h/2+ )=2ilm[koy(D lnan+D 2bn)Y(R p +6po)Jpn] .

	

(67)
n

	

p

Similarly, using (45),

d

P(h/2 )=2'Ir

	

n O(D1nan+D2nbn) L
m
.(am+bm)

0
k2(X)um(x)un(x)dx

d

= 2i Im
[
y ko(D1nan+D2nbn) Y- (Rp+bpo)Kpm

0 k21x)
um(x)un(x) dx

(68)

For (67) and (68) to be identical we require that

d

	

1
Jpn = >Kpm 0k2(X) um(x)un(x)dx .

	

(69)

Consider the series expansion

X

ep(x) = Y- cmum(x),

	

(70)
M=1
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which is valid as the {um (x)Im = 1, 2 . . . . { form a complete set on [0, d] . Of course, any
subset of the full set of the {um{ is not complete and so a truncated sum in (70) would
lead to numerical errors . On multiplying throughout (70) by u; (x)/k 2(x) and
integrating over [0, d], we obtain

ci =KPi

from the previously elaborated orthonormality properties . Thus

JP. =

('d
21 eP(x)un(x) dx = Y KPi

/'d

21	 um(x)u n(x) dx .

	

(71)
J o k (x)

	

M=1

	

o k (x)
Comparing (69) and (71) we deduce that the quantity [P(h/2+)-P(h/2-)] can be
used in the estimation of truncation errors in numerical calculations . The same
remark, of course, applies at the lower grating surface y=-h/2.

2.8. The P polarization diffraction problem
In this section we shall briefly discuss the relevant differences in the form of the P

polarization problem (brought about by the different forms taken by the boundary
conditions). Here we concentrate our attention mainly on the eigenvalue problem,
drawing on the material in § 2.2 of this paper and § 2.2 of [1] for the sake of brevity .

In the region D 1 uD2 we must solve the Helmoltz equation
2

	

2

a E+ a	 +k 2(x)E=0,

where both E and 8E/8x are continuous at x = c and pseudo-periodic between x=0
and x=d.

By writing E in separable form as

E(x, y) = u(x)v(y),

we arrive at the operator equation derived in [1],

Lu = - /3 2u,

	

(72)

where

d2
L dx2 +C2S(x-c) .

	

(73)

The solution of equation (72), obeying the above boundary conditions, has the form

u(x) =0(x) + (OW
where

i - 0(d)
w= 0(d)

and 0(x) and O(x) are defined in equations (12)-(13) of [1] . The eigenvalues (-~32 )
obey the non-linear equation (18) of [1],

cos (/3c) cos (yg) 2C~ + ~~ sin (fic) sin (yg) cos (a 0d),

	

(74)

where y and /1 are linked by equation (22) .
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Following the discussion of § 2 .3 we introduce the operator equation

L +u+ = -(# + ) 2u+

	

(75)

with

L + =d 2 +~ 2S(x-c)

subject to the constraints that u+ and its normal derivative are continuous at x = c and
pseudo-periodic between x = 0 and x = d. Some simple manipulation reveals that L +
is the adjoint of L with respect to the inner product

d

f, g> _

	

T(x)g(x) dx .

	

(76)f 0

In a manner analogous to that used in § 2 .4, we may demonstrate that the
eigenfunctions {u + (x)} of equation (75) obey the relation

u`+(x)=O(x)+w+f(x),
where

w+ -
-8(d)

O(d)

Here we note that $+ =fl and y+ =y .
The orthogonality of the set {u} with the set {u + } with respect to the inner

product (76) may also be easily verified . The completeness of the set of eigenfunc-
tions {un(x)} may be established along the same lines as the discussion in sections § 2 .5
and § 2.2 .2 (iii) of [1], and thus we may expand E in D 1uD 2 in the eigenfunction
series

E(x, y) _ Y [an sin (µj)+bn cos (1tj)]un(x),

	

(77)
n

where

µ
2= ki -

f 2
=k2 - y2 .

For later convenience, we choose to make the {u,,} and {u„ } orthonormal bases
with respect to (76) .

The solution of the diffraction problem proceeds according to the analysis of § 2 .6
with the following modifications :

x = diag (xp)

tl = diag (r1 p )

Jqm =
J

d

ep(x)um(x) dx
0

and

d

Kpn =

	

eq(x)u„ (x) dx .f 0
Similar conclusions concerning the energy balance criterion (§ 2 .7) can be drawn

for this polarization .
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2.9. Numerical solution of the eigenvalue equation
Any numerical implementation of the above formalism must involve the solution

of the complex, non-linear equations (21) and (74) for the two fundamental
polarization cases . The problem of solving such equations poses substantial
numerical difficulties, as it is essential to find a complete set of roots with modulus
smaller than a specified tolerance . The use of an incomplete set of eigenvalues and
modes leads to intolerable numerical errors .

The numerical method used here is based on a generalization [3] to complex
numbers of the standard numerical regula falsi technique [4] . It has proved adequate
in the case where the modulus of the complex refractive index is not too large .
However, when this modulus does become large, the computation times become
excessive and in some cases the algorithm does not find a complete set of eigenvalues .
Evidently an alternative algorithm will have to be devised in this case . Investigations
into this problem are in progress .

3 . Numerical verification of the formalism
The formalism has been implemented numerically and the program results have

been tested using various criteria . Firstly, the numerical results for lossless
structures have been shown to agree with those of the formalism presented in [1] .
Note that the lossless structure encompasses both the case where refractive indices
are purely imaginary as well as purely real . Secondly, we have used the criteria of
conservation of energy and the reciprocity theorem to confirm the numerical results .
A typical result of such a verification is given in table 1, in which the following
notations are adopted for brevity :

ID' =(pp, arg(Rn)),

	

(78)
where pp is the efficiency [1] of thepth reflected order, and arg (R P ) is the phase of the
pth reflected order ; E.R. is the total reflected energy, E .T. the total transmitted
energy, and E.D. =1-E.R.-E.T .

From table 1 it can be seen that the numerical results are in excellent accord with
the reciprocity theorem, whether the returned order be reflected or transmitted . The
agreement is slightly less satisfactory for the S polarization results than for the P
polarization results. This feature is also evident in the criterion of conservation of
energy (as can be seen by comparing E .D. with Q for each problem) . It is a general
situation in diffraction grating theory that in corresponding S and P polarization
calculations, the results of numerical errors are more evident for the former than for
the latter .

One characteristic of the present formalism is that the convergence of the modal
expansions it employs grows more rapid as the ratio of groove depth to period
becomes large . This characteristic has been exploited previously in discussions of
inductive grids [5, 6], and is well exemplified by the modal amplitudes given (for a
relatively extreme case) in table 2 . The formalism is here shown to provide results of
good accuracy for a grating with a ratio of groove depth to period of two hundred .
When a similar calculation was attempted with the most powerful existing integral
equation formalism [7], adequate accuracy was achievable only for values of this ratio
substantially smaller than five .

Note that the good accuracy of the numerical results in table 2 is obtained with a
very small number of modes used in the calculations . In fact, the accuracy of these
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Table 1 . Reciprocity results .

Grating parameters : d =1 .0000µm, c =0 .4001 pm, h =0 . 1000µm,

Method parameters : Number of modes= 20,
Number of Rayleigh orders=51 .

t The angle of diffraction in air of the order in question .
Quantities equal according to the reciprocity theorem are identified by * and ** .

results has been seen to be not significantly reduced if only the first mode is used in
field expansions inside the grating groove region .

4 . Conclusions
We have presented a modal formalism describing the diffraction properties of the

finitely conducting lamellar grating. The finite conductivity of the structure makes it
necessary to consider not only the boundary value problem associated with the
physical structure, but also that associated with the adjoint structure . Despite this
complicating factor, the resultant formalism lacks none of the elegance of our
previous formalism for the lossless lamellar grating .

The numerical implementation of the formalism has been well verified in the case
of gratings whose complex refractive index is not too large . Further work on

Problem Quantity P polarization S polarization A.D.t

1 (DR 1* (2. 8529 x 10-2 ,

	

92.7502°) (1 . 6772 x 10-2 , - 78 . 6682°) -36.915°
(DT

1* (3 .8574 x 10-2 ,

	

96. 3899°) (2 . 1372 x 10-2 , 117 . 5688°)
(Do (62128 x 10-2, -139 .1595°) (9 . 5755 x 10 -2 , 32 . 6897°) 11 . 500°
(Do (4.6913 x 10-1 ,

	

44.8301°) (3 . 9939 x 10 -1 , 50 . 8365 ° )
(DR** (4. 6011 x 10-3, - 61 . 1899°) (1 . 2779 x 10 3 , 120 . 5751 ° ) 87. 963°
(Di** (5 . 4894 x 10-3, -59 .6281°) (3 . 6226 x 10-3,-46 .2306°)
E.R . 0 . 09526 0 . 11381
E.T . 0 . 51319 0 .42438
E. D . 0 . 39155 0.46181
Q2 0 .39156 0.46047

2 (DR
1 * (2 . 8529 x 10" 2 ,

	

92.7501°) (1-6772x 10-2,-78 .6671 ° ) -11 .500°
1 (3 . 8574 x 10-2 ,

	

96. 3899°) (2 . 1372 x 10-2 , 117 . 5694°)
E.R . 0 . 16745 0 .06755
E.T . 0 . 37027 0 .43902
E.D . 0 . 46229 0 .49343
Q2 0.46229 0 .49184

3 (DR** (4 . 6012 x 10 -3, - 61 . 1899°) (1-2800x 10 3 , 120.5788 ° ) -11 .500°
(D1** (5 . 4894 x 10-3, - 59. 6281°) (3 . 6223 x 10-3 ,-462321°)
E.R . 0 . 89431 0 .82541
E.T . 0 .00993 0 .02269
E. D . 0 . 09575 0 .15190
Q2 0 .09575 0 .15151

r1=1-0, r 2 =1 .5+il •0 , r 3 =1 . 0 .
Wavelength: A=0 .80µm,

Incidence parameters : Problem 1, tb=11 . 50 ° ,
Problem 2, 0=36-91518',
Problem 3, 0=-87.96276° .
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Table 2 . Results for a grating with large h/d.
Grating parameters : d=0 .0040µm, c=0 .0024µm, h=0 .8000µm, h/d=200,

r 1 =1 . 0, r 2 =2.7+i0 . 5, r 3 =2.7+i0 . 5 .
Incidence parameters: )=0 .80µm, 4=0° .
Method parameters: Number of modes= 3,

Number of Rayleigh orders=31 .

Quantity

	

P polarization

	

S polarization

a* j 3 . 1734 x 10 - ' 6.5833 x 10 -1
brl 3 .7891 x 10 -1 6 . 4689 x 10 -1

41 1 . 1223 x 10 -5 3 . 5221 x 10 -9

lbz l 1 .3451 x 10 -5 4 . 2734 x 10-9

14

	

5 .0528 x 10 -9

	

1 .0174 x 10 -3

lbfl 6 .0571 x 10-9 1 . 0678 x 10 -3
E.R . 0. 10043 0 .04284
E.T . 0. 02295 0 .71290
E.D . 0. 87663 0 .24426
Q 2

	

0 .87663

	

0.24416

alternative techniques for the location of eigenvalues in the complex plane should
enable this restriction to be removed .
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Une theorie modale rigoureuse decrivant les proprietes de diffraction d'un reseau
lamellaire a conductivite finie est presentee . La methode utilisee est la generalisation aux
structures a pertes d'un formalisme precedent pour un reseau lamellaire dielectrique . On
donne des exemples de resultats de la methode demontrant sa precision et son aptitude a
resoudre des problemes difficiles a traiter par les formalismes largement utilises d'equations
integrales de la theorie des reseaux de diffraction .

Es wird eine streng modale Theorie zur Beschreibung der Beugungseigenschaften eines
endlich leitenden Lamellengitters prasentiert. Das benutzte Verfahren ist die
Verallgemeinerung eines friiher fur das dielektrische Lamellengitter benutzten Formalismus
auf verlustbehaftete Strukturen . Probeweise Ergebnisse des Verfahrens demonstrieren seine
Genauigkeit and seine Fahigkeit, Probleme zu behandeln, die mit dem vielbenutzten
Integralgleichungsformalismus der Beugungsgittertheorie nicht handhabbar sind .
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