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Abstract . A rigorous modal analysis of lamellar gratings, i.e . gratings having
rectangular grooves, in conical mountings is presented . It is an extension of the
analysis of Botten et al . which considered non-conical mountings. A key step in
the extension is a decomposition of the electromagnetic field in the grating region
into two orthogonal components. A computer program implementing this
extended modal analysis is capable of dealing with plane wave diffraction by
dielectric and metallic gratings with deep grooves, at arbitrary angles of
incidence, and having arbitrary incident polarizations . Some numerical examples
are included .

1. Introduction
The modal approach has been applied by many authors to lamellar, non-

perfectly conducting gratings in the past [1-10] . Most noticeably, Botten et al . [5-7]
presented a series of three papers, in 1981, on the modal analysis of dielectric,
finitely conducting, and highly conducting lamellar gratings . Their work was later
formulated in a more systematic way, and its certain numerical aspects were
improved, by Suratteau et al. [8] and by Tayeb and Petit [9] . However, these
analyses are limited to non-conical mountings . In many applications, lamellar
gratings are used in conical mountings [11] . Recently, a modal analysis of lamellar
gratings in conical mountings was presented by Peng [12] .

The present work differs substantially from that of Peng [12] in mathematical
formulation and numerical implementation. In Peng's work, the validity of the
decomposition of the electromagnetic field in the corrugated region into two
orthogonal components is assumed without proof . The eigenfunctions (the modal
fields in the corrugated region) for a grating in a conical mounting are constructed by
geometrical means from the TE and TM eigenfunctions for the grating in an
equivalent non-conical (also called classical) mounting . The completeness and
orthogonality of the eigenfunctions assembled in this manner are not addressed. In
this paper, the eigenfunctions along with their completeness and orthogonality are
derived rigorously and systematically from the boundary-value problems .

The present work can be considered as an extension of the works of Botten et al.
and Suratteau et al. to conical mountings. A key step in its development is the proof
of the field decomposition mentioned above . Once this is done, the task of finding
eigenvalues and eigenfunctions for a conical mounting reduces to that of a classical
mounting, and the previous results of the above authors, including their powerful
and sophisticated numerical methods for finding the eigenvalues, can be used .

The mathematical formulation of the modal analysis is presented in Section 2,
and the numerical aspects of the analysis are addressed in Section 3 . Section 4
provides some numerical results . The validity of the field decomposition is proved in

0950-0340/93 $10-00 © 1993 Taylor & Francis Ltd .
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Appendix A. For the sake of the normal flow of the paper, some of the results
available in [5-9] are re-stated in Sections 2 and 3, but often are formulated
differently. In other instances, the reader is referred to the original references .

2. Mathematical formulation
2.1 . Notation

A lamellar grating in a conical diffraction configuration is depicted in figure 1 .
The coordinate system is chosen such that the x axis is perpendicular to, and the z
axis is parallel to, the grating grooves, and the y axis -is the normal of the overall
structure . A monochromatic plane wave of vacuum wavelength 2 o is incident on the
lamellar grating at a polar angle 0 and an azimuthal angle 0. The range of 0 is
0 < 0 < it/2 and that of 0 is - 7C< 0 5 it, with the clockwise direction being the positive
direction for 0. The same conventions will be used for the diffracted waves that are
not shown. The incident polarization is in general elliptical.

The geometry of the lamellar grating is shown in figure 2 . The grating period is d,
and the widths of medium 1 and medium 2 are d1 and d2 . We shall call the regions of
space where y >h/2, y < -h/2, and -h/2 < y < h/2, regions 1, 2, and 0, respectively,
where h is the grating groove depth . We shall use the superscript (1), wherej = 1, 2, to
denote quantities associated with regions j and the subscript j to denote quantities
associated with the two media in region 0 . Thus, the permittivity and permeability of
the medium in region 1 are c(i) and µ(l) , and those in region 2 are c(2) and µ(2) . The
permittivity and permeability of region 0 of periodic functions of x,

E(x)=E1,

	

µ(x)=h1,

	

0<IxI<d1/2,
s(x)=E2,

	

µ(x)=µ2,

	

dl /2<Ixl'<d/2 .

Although for most optical applications, the permeability is a constant and equals that
of the vacuum, to reveal the symmetry of the electric and magnetic fields, ul and µ2
are formally assumed to be different. The Gaussian system of units is used in this
paper .

y

Z
Figure 1 . The coordinate system for a lamellar grating in a conical mounting .

(1)



D
ow

nl
oa

de
d 

B
y:

 [T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft]
 A

t: 
12

:2
5 

11
 D

ec
em

be
r 2

00
7 

Modal analysis of diffraction gratings

Figure 2. The geometry of a lamellar grating.

Let k o be the magnitude of the vacuum wave-vector . The magnitudes of the
wave-vector in regions j =1, 2 and region 0 are denoted by kN and k(x),

kth 2 = E(Jlµwk2

k2(x) = c(x)µ(x)ko .

The wave-vector of the incident plane wave is

k=k"1)(k sin 0 cos0-9 cos 0+! sin 0 sin 0) .

	

(4)

We denote the z component of the incident wave-vector by k=,

kZ = kW sin 0 sin 0 .

	

(5)

and we define the reduced magnitudes of the wave-vectors by PJI and F(x),

~ 2 = k~2 -kz,

	

(6)

P(x) = k 2(x)- kz .

	

(7)

Since the physical problem is time and z invariant, the electromagnetic field may
be assumed to be of the form

E(x,y, z, t) = E(x,y) exp (ik=z- iwt),

	

(8 a)

H(x, y, z, t) = H(x, y) exp (ik=z-iwt) .

	

(8 b)

Throughout this paper, i = J-1 . Substituting (8 a) and (8 b) into Maxwell's
equations we may express the transverse components of the electromagnetic field in
terms of the longitudinal (z) components,

Er(x, y) =
k2(x)

[kZVJEZ (x, y) - µkof x V iHH (x, y)],

	

(9 a)

H,(x, y) = j2~x) [k=V,HZ(x, y) + €k.9 x VrEZ(x, y)},

	

(9 b)

where V,=kOx +98, . So in solving the conical diffraction problem, it is only
necessary to work with the z components of the electric and magnetic fields .

555

(2)

(3)
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As usual, the fields above and below the corrugated region may be written in
Rayleigh expansions [13] :

amplitudes of the z components of the incident and diffracted electric and magnetic
fields in regions 1 and 2 .

2.2. Field decomposition
Suppose h tends to infinity in figure 2, yielding a medium that is periodic in x and

infinite in y and z. If the general expression for the electromagnetic field in this
infinite medium is known, by imposing the interface conditions at y = ± h/2 between
this field and those given in (10) and (11), we can determine all the unknown field
amplitudes .

For a z- and y-invariant medium, the following system of equations for the fields
Ez and Hz can be derived from the original Maxwell's equations

C

	

U2 _OX)+ayz+
z

	

+ko Tz
dx,9z ) ay

z	
z

	

z

	

2

1-k
_~ y

	

-o ax z ay µax C2 ax)+ ayz+

/ Ez 1

Hz /
=0. (14)

To determine the modal representation of the electromagnetic field we need to solve
(14) subject to the pseudo-periodic conditions [13] .

Ez(d/2, y) = exp (iaod) Ez( -d/2, y),

	

Hz(d/2, y) = exp (iaod) Hz( -d12, y),

axd/2,y)=exp(iaod) aax (- d/2,y),

	

asz (d/2,y)=exp(iaod) aaz (- d/2,y) .

In addition, we also need the interface conditions for the fields and their derivatives
at the medium discontinuities . However, the burden of mentioning the interface
conditions can be relieved if we understand Maxwell's equations in the sense of
distribution [13] .

Equation (14) is a coupled system of equations for Ez and Hz , whose direct
solution seems to be difficult . However, by the folllowing field decomposition, its
solution is simplified. In a z- and y-invariant medium, an electromagnetic field is
said to beEl (Hl) if the x-component of its electric (magnetic) field vanishes . Let the

+ OD

EE(x, y)=IZ`) exp [iaox-i~o )y]+

	

Rn`)exp [ia„x+irn"y], (10a)
n=-oo

t ao

HZ(x,y)=Isa) exp [ia ox-i~o )y]+

	

R? exp [ia„x+ifl,1 y] . (10b)
n=-oo

(11 a)

for y > h/2, and

EE(x, y) _ E r„l exp [iaox- i fnz)y],
n= 00

+ o0

Hz(x, y) exp [ia„x-ifi(nz)y], (11 b)
n=-ao

for y < h/2, where

an =ao +2nn/d, ao =kU) sin0cos0, (12)
#)244)2 -an, Re [fl/1]+Im[P.W]>0 . (13)

In (10) and (11), Ii`) , IZh) , and 7 .() are, respectively, the complex
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In Appendix A, we prove that any field (Ez, HZ)T, where superscript T signifies
matrix transpose, satisfying (14) and (15) can be uniquely expressed as a sum of an El
field and an Hl field, and these two component fields satisfy (14) and (15)
independently. Thus the task of solving the vector-valued boundary-value problem
(14) plus (15) is reduced to two independent scalar ones to be derived below .

Using (16 a) to eliminate Hz from the first equation of (14), and using (16 b) to
eliminate EZ in the second of (14), we obtain

1

	

2µa ~~E_`) /+-E(e) +j2E=` ) =0,

	

(17a)

Eax(E
-Ox H="))+OZH? + 2H? =0 .

	

(17b)
Y

In these two equations, the electric field and the magnetic field are no longer coupled .
Actually, these two equations are identical to the equations for the TE and TM
polarized fields in classical mountings [5-8), provided that f2 is replaced by k2 .

The symmetry exhibited by (17 a) and (17 b) with respect to E(e) andH() and with
respect to c and y suggests that they can be rewritten as

2

TX
-L) F(') + ZF(')+~2F(')=0,

	

(18)
Y

where, and henceforth, s=e, h, and

F(e) = E( e),

	

F(h) = Hzh),

	

a(`) = L(x),

	

ath) = E(x )

	

(19)

Let G(') denote quantities complementary to F (') such that

G(`) =H(`)

	

G(h)=E(h)

	

(20)Z ,

	

_

Then, (16 a) and (16b) become

a
G(s) =

6(s)kZ a
F('),

	

(21)

ay

	

a(')ko ax
where

6 (e) = -1,

	

a(h)=1 . (22)

The new notations introduced in (19), (20), and (22) allow the El andHl fields to be
treated identically in the rest of this paper .

Let a trial solution of (18) be

F(')(x,y)=u(°)(x)w(') y) .

	

(23)
Then the standard procedure of separation of variables leads to

a(') d \1du( ') ~ +(F2-)'(')2)U(s)=O' (24)
dx a(') dx

where A.(') is a constant . The differential equation (24) and the conditions (15)
together pose a boundary-value problem which is considered in the next Section .

Modal analysis of diffraction gratings 557

superscript (e) denote the El field, and (h) the Hl field. Then from (9)

k=aE=`) +,uko Hz` ) = 0, (16a)
Y

kZaxHzh)-ckoa E=h) =0. (16b)
Y
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2.3 . The boundary-value problem
In this Section and the next Section, for simplicity, we omit the superscript (s) in

the relevant quantities . Let L be a differential operator defined by

Then the boundary-value problem for determining the eigenvalues and the
eigenfunctions of the modal fields is given by

Let us now define an inner product (,) for any two integrable, complex-valued
functions u(x) and v(x) by

d/2

	

1
(u, v)

	

-dJ2
v(x)

u(x)v(x) dx,

	

(28)

where a bar indicates the complex conjugate . For a lossless dielectric grating
(c(x) > 0,µ(x) > 0), it is easily seen that L is self-adjoint, i.e.

(Lu, v) = (u, Lv) .

	

(29)

From the theory of ordinary differential equations [14], we know that the eigenvalues
determined by the boundary-value problem (26) are real and they form a
denumerable sequence. Furthermore, the eigenfunctions form a complete, ortho-
normal basis in the sense that any continuous and piecewise differentiable function
f(x) satisfying the boundary conditions in (26) can be expanded in the
eigenfunctions .

In order to embrace the most general cases, however, we assume that region 0 is
composed of two media of complex permittivities and permeabilities, i .e. the
functions s(x) and µ(x) are in general complex valued . In addition, we assume a o , and
possibly k Z, to be complex. (This is a minor generalization of the works of [5-9] .)
This permits us to apply the current model to the homogeneous problem of grating
diffraction [15] . In either case, the operator L is no longer self-adjoint ; therefore, the
eigenvalues of (26) are no longer necessarily real and the eigenfunctions are no longer
orthogonal and complete. To be able to use the modal field expansions for the total
field, it is necessary to consider the adjoint of (26), which is defined by

L +u + =P +u+

u+(d/2)=exp (ia od) u+(-d/2),

	

(30)

u+'(d/2)=exp (ia od) u+ '(-d/2),
where the superscript + indicates the adjoint and L + is the differential operator
adjoint to L . It is easily seen that

(Lu, v +)=(u, L
+v

+ ),

	

(31)

Lu = pu,

u(d/2)=exp (iaod) u(-d/2), (26)

u'(d/2) = exp (iaod) u'(- d/2),

where a prime indicates the differentiation with respect to x, and

P=22. (27)

L=a d 1 d + f2

	

(25)
dx o dx
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L + =L=adx I)+P .

	

(32)

From the theory of non-self-adjoint boundary-value problems [14,16], we know
that under certain conditions, which (26) and (30) satisfy, two mutually adjoint
boundary-value problems have the following properties .

(a) Both boundary-value problems possess an infinite number of eigenvalues
and the eigenvalues can be ordered such that

Pm = fin,,

	

m=0,1,2,_ .

	

(33)

(b) The eigenfunctions {um} and {u'), are bi-orthonormal, i .e .

(um , u„)=8„,,, .

	

(34)

(c) Any continuous and piecewise differentiable function f(x) satisfying the
boundary conditions in (26) has a uniformly convergent formal expansion

00
f(x)= Y_ (f,Uj )um(x) .

	

(35)
M=O

Hence, even for lossy dielectric or metallic gratings, it is still mathematically justified
to represent the total electromagnetic field in region 0 by a superposition of modal
fields, as has been done by Botten et al.

Incidently, the Rayleigh expansions (10 a, b) and (11 a, b) can be viewed as
expansions in basis functions

e„ (x) = exp (ia„x) .

	

(36)

It is easy to verify that ep(x) are eigenfunctions of (26) with L replaced by d2/dx2 . The
adjoint of this new boundary-value problem, with respect to a new inner product
<, > defined by

f
d/2

<u, v> =

	

u(x)v(x) dx,

	

(37)
J -d/2

is (30) with L+ again replaced by d2/dx2 , and

e„(x)=dexp (ia„x)

	

(38)

are the adjoint eigenfunctions .

2.4. Eigenvalues and eigenfunctions
The explicit forms of the characteristic equation for determining the eigenvalues

and eigenfunctions can be most conveniently derived by taking advantage of the
simplicity and symmetry of c(x) and u(x) given in (1) . It is easy to verify that the
following two functions are two linearly independent solutions of (24)

COsy lx,

	

0 < Ixl < dl

9)e=

	

(39)
y1di

	

dll a2Y1

	

y1di

	

d1\ dl

	

dcos2 cos y2 IxI - 2 - a sin 2 sin y2 IxI - 2

	

2 5 IxI <2 ,
1 Y2
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1smyl x,

	

O'<1xI<2
Y

	

1 ,
1

1

	

Yldl

	

dl

	

a2Y1

	

Y1d1

	

dl

	

dl

	

d
Y1sgn(x)Csin

2
cos y 2 1xI- 2 +QlY2cos

2siny2 1x1-
2)],

2 S~x~ 2

(40)

where, for j =1, 2,

A(P) =

yj =Fj - p.
Clearly, cp e is an even function and cp0 is an odd function . The general solution of (24)
is therefore given by

u(x) =Acp e(x) +B(po(x),

	

(42)

where A and B are arbitrary constants . Imposition of the boundary conditions in (26)
on (42) gives the characteristic equation

where

(1-x)We(d/2)

	

(1+ic)cpo(d/2)
(1 +x)cpe(d/2)

	

(1-ic)cpo(d/2)

Ic=exp (iaod) .

	

(44)

It is obvious that when K= ± 1, i.e. in Littrow mountings for which the normal
incidence is a special case, A(p) is a product of two factors . For general angles of
incidence, factorization of A(p) is impossible, and the explicit form of the character-
istic equation is

cosy 1 d1 cosy2d2 - !ZY1+ Q22 siny 1 d 1 siny2d2 -cosaod=0.

	

(45)
2 6172 6271

This is a transcendental equation for p, whose solutions are, in general, complex
numbers .

The eigenfunctions of (26), expressed in terms of cp e and cpo are given by

iCcpo(x),

	

if K=+1, cpe(d/2)=0,

U(X) = iCgpe(x),

	

if k=-1, cp e(d/2)=0,

C[(1+K)cpo(d/2)cp e(x)-(1-x)cpe(d/2)cp o (x)],

	

otherwise
(46)

where C is the normalization constant . The eigenfunctions of the adjoint problem
(30) can be simply obtained by replacing the relevant quantities in (39-46) by their
adjoint counterparts. It can be shown that for each eigenvalue, there is in general
only one eigenfunction and accidental degeneracy of an eigenvalue can only occur in
Littrow mountings . Since the normalization constants C for u(x) and C + for u +(x)
are not individually fixed (34), we can demand C = C. Then it can be shown that

U+(x)=K-,U(-X). (47)

This direct relationship between the two mutually adjoint eigenfunctions is very
useful in the numerical implementation of the theory .
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2.5. Modal field representation
Since the basis functions {u(.$) } are complete and bi-orthogonal in the sense stated

in 2.3 ., the general solution of (18) for Fps) can be written as

and a(.) and b„) are modal field amplitudes to be determined later . Substituting (48)
into (21) and integrating with respect to y, we obtain an expression for G (') ,

00

(The integration constant that would appear in (50) can be shown to be zero.) Thus,
by (48), (50), and (A 1) we complete the derivation of the following modal field
representation of the total electromagnetic field in region 0 :

EZ(x, y) _ - wm)(y)um)(x)

	

X~~)(y)w2h)(x

(H=(x,y)} - o(Xw(y)wm ) (x) + o w(1)(y)u(h)(x) *

	

(53)

Before closing this Section, we give the orthogonality relation between the
vector-valued El solution and Hl solution . For this purpose, we define an inner
product [,] of two vector-valued functions 'p and ip such that

[w,0}=
f

d/2

(PT(- /µ 1~E tFdx .

	

(54)
-d/2

Let (')=(u(,~), WM`))T , and (P„(h)=(w„(", u„«))T . Then it can be shown that

[(P (me) , (P. ")]=0 .

	

(55)

2.6 Matching interface conditions
Having obtained the expressions of the electromagnetic fields in all regions of the

space, we are now ready to form the final system of linear equations for determining
the unknown field amplitudes by applying the interface conditions aty= ±h/2 . The
interface conditions are the following :

where

G") = E X(.s)(y)w(.')(x), (50)
®=o

k 2 + A;$)2

and

4S)

	

s b(,s)cos AV + a() sin4)y], (51)

(52)

(Y) =

I

	

k-, P) d
w~m)(x)= k2

	

m')
(x) .

+2)2 k 0t')o

OD

where

P°)= E w(.S)(y)U)(x),
M=o

(48)

w.(')&) = a() cos 2 y +b s) sin A.(sly, (49)

E. + =E.-, Hz+ =Hz-, (56 a)

Ex+ = Ex-, Hx+=HX-, (56b)
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where the subscripts + indicate limits from above and below the interface respec-
tively, and from (9 a) and (9 b),

_

	

a

	

a
Ex

2
kzaxEz+µkoayHz

	

(57 a)

Hx k'2 kz axHz-cko
a
Ez

)
.

	

(57b)
y

Substituting (10 a, b), (11 a, b), and (53) into (56 a) and (56 b) and carrying out some
tedious algebra, we have, for the continuity of Ez and Hz at y = + h/2,

00

	

OD

[(a"{ ;'+fi„))u(e)(x)+(A(,")a. +B(m)$„h,))w;„h)(x)l = e'eo(x)+

	

ne'ert(x),
m=o

	

n=-oo

and
00

	

00

[(-m) + &C,h) ) uc(h (x) + (A(e)a-Le) + 8V,„)bl,„))w'm'(x)] =P. )e0(x) +

	

e' en(x) .
M=0

	

n=-a0

For the continuity of Ez and Hz at y=-h/2, we have

and

For the continuity of Ex and Hx at y = + h/2, we have

(AtM)a-c)+B(m)ft )

	

)(x)
M=0

	

14
00

and
00

	

1E (A(h)a-(h)+B(h)h))_U(h)(x)
M=0

and

00

	

OD

E [(aim' - ble')u( '(x) + (- A(m)a(h) + B(m'~m')w(m'(x)] =

	

l n' en(x),
m=0

	

n=-ro

OD

	

OD

[(a-Lh) -Sm')u(mh)(x) + (-A((e)a" ) +B(„')w(m'(x)] = Y_ finh'ert(x) .
M=0

	

n=-a0

00

=(Z11'p1'~Cz '+ T31'a01ih')e0(x) - F, (T11'F~n 1'nne)- T3 'OCnnnh')en(x),
n=-00

00
=(T21)R(O')Th)-,C.31)aOlz))eO(x)-

	

[C2)~(al) nh) + 23 'OCn~ne' ]en(x) .
n=-a0

Finally, for the continuity of Ex and Hx at y = - h/2, we have

(-A(,a"~m)+B(,p)6';))lu(,„)(x)= F, (T12)~2) gne) +T32)OCn n')en(x)r
m=0

	

µ

	

n=-00

00

	

OD

(-A(M)a^4m)+B(m'fj(m')l u(m'(x)=

	

(TZ)~2)g(h)-T(2)OCn1'(e))en(x) . (59 d)
m=0

	

E

	

n=-00

00

(58 a)

(58 b)

(58 c)

(58 d)

(59 a)

(59 b)

(59 c)

In the above equations the unknowns are

a "(,K)=a(13)cos(.4;)h/2),

	

6t,.3)=b(,„)sin(A(()h/2),

	

(60)
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and the rest of the new notations are defined in Appendix B . The numerical solution
of equations (58) and (59) will be considered in Section 3 .2 .

2.7. Diffraction efficiency and polarization
Once %s) and ~„) are solved from (58) and (59), k. ) and T(p) are given by (61) . By

virtue of (9 a) and (9 b), all quantities of practical interest can be readily expressed in
terms of k. ) and T(„ ) . Suppose the media in regions 1 and 2 are lossless, and the
incident plane wave is normalized such that

,~)2 (c (1) I T(e)12+µ(1)II(h)12)=1 .

	

(62)

Then, the diffraction efficiencies for the reflected and the transmitted propagating
waves of order n are given by

where n and n run through all propagating orders in regions I and 2, respectively .
In many applications involving conical mountings, it is very important to be able

to predict the states of polarization of the diffracted orders . Let us associate with a
propagating order having a wave-vector

k„(n= Stan ±yam + 4kz ,

	

(65)

two unit vectors ku/ and fty) such that

k(nx9

	

(J)&P
1W

	 x
91,

	

dp-AP x kS.

	

(66)

In (65) the plus sign is for j = 1, and the minus sign is for j = 2. The polarization of this
diffracted order can be described with the following two angular parameters [17] :

cep

	

CIE
	 1

/

	

(r) '~an =arctanIEnP	 ~
I

	

Ocean < -,
2

E~
by=-arg

Ef
,

	

-1L<6e)<R,
nP

(67)

(1)

	

F's)

	

(1)

	

e) 2

	

(1)

	

h) 2
nn = ~(ii2 (E IR (n I +µ III I ), (63 a)

and

(2)= R(2) e) I 2

	

T(
(2)1

7e + (2)
I n

h)1 2 )
. (63 b)Ehn

	

µk(2)2(

If the media in region 0 are also lossless, the energy balance theorem holds :

~ 17n1) +r gn2) -1, (64)

Modal analysis of diffraction gratings 563

A,(,°) = R(3) exp [ifl,' h/2],

	

P„)= 71„) exp [if„2)h/2], (61)
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where EU) and Ep are the s and p components of the electric field . (The notation (XP
should not be confused with an defined in (12) .) It is a simple exercise to show that for
a diffracted wave in medium 1,

E(u_~/Ucu\ u2aqC(1)ko(ne)+fl(1)knk(nh)

	

(68)
E(l )
E(1) - (1)

	

u(1)

	

h) _ R(1) n(e)'
RP

	

E

	

aq ko n

	

n k n

The expression for a diffracted wave in medium 2 may be obtained from (68) by
replacing .R() by V. ) , superscript (1) by (2), and P( ) by - pz) .

3. Numerical aspects
3 .1 . Solution of the characteristic equation

An efficient, reliable, and accurate numerical method for solving the character-
istic equation (45) is of vital importance to the performance of a computer program
implementing the modal analysis. Two very different numerical methods have been
employed. The method of Botten et al. [7,18] is a general one capable of finding all
zeros of an analytic function in a prescribed region of the complex plane . That of
Suratteau et al . [8] and Tayeb and Petit [9] is a problem-specific method that takes
advantage of the fact that (45) can be factored in Littrow mountings . Both of these
methods systematically find all eigenvalues of (45) in a prescribed region of the
complex plane, and both of them perform well even for highly conducting gratings .
As reported by the authors of the second method, their method is as effective as the
first method but requires significantly shorter computation time . For this reason, we
have decided to use the second method in our numerical implementation of this
work. For details of these numerical methods, the interested reader is referred to the
references cited above .

3.2. Solution of the field amplitudes
Before embarking on the numerical solution of (58) and (59), we first analyse the

composition of these equations . In (58) and (59) there are eight equations and eight
sets of unknowns. The right-hand sides of these equations are expanded in basis
functions {en}, which are bi-orthogonal to their adjoint {e.} . The left-hand sides are
expanded in four different sets of functions {u („)}, {u(m)}, {w(„)}, and {w(,h)} . Of these
four, as scalar-valued functions, {u(.e) } and {u:)} are bi-orthogonal to their respective
adjoints, but not to each other . The functions {w(,„) } and {w(,h)} are proportional to the
derivatives of {ut) } and {u(.h) } and they are not orthogonal to any other functions .

Equations (58) and (59) constitute a system of equations in known function
expansions with unknown expansion coefficients . Such a system can be solved by the
method of moments [19], which consists of three steps . First, a projection basis, i .e. a
set of linearly independent testing functions, is chosen . Then, both sides of the series
expansion equations are projected on to this basis by forming appropriate inner
products with the testing functions . This step eliminates the x dependence of the
equations and produces an algebraic linear system of equations of infinite dimension .
Finally, the linear system is truncated to a finite order and its solution is obtained by
the standard numerical techniques .

Since equations (58) and (59) are already expanded in terms of bi-orthonormal
basis functions, it is advantageous to choose the adjoints of these basis functions as
the testing functions so that the subsequent numerical solution can be simplified . For
each of the eight equations we have two convenient projection bases, {u~*, (s)} and {e.+ } .
Therefore, there can be many different combinations of choices of projection bases
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for the overall system. Following Suratteau et al ., a projection method in which the
interface conditions for the z components are projected on to one basis and those for
the x components are projected on to the other basis is called a hybrid method . A
projection method in which all interface conditions are projected on to one basis is
called a homogeneous method . For the case of non-conical mountings, Suratteau et
al. have proved that the numerical solutions resulting from the hybrid methods
satisfy the energy balance and reciprocity criteria automatically (independent of the
truncation orders) while those resulting from the homogeneous methods do not . It
can be shown that the above statement is also true in the case of conical mountings .

In this paper, we adopt the homogeneous method utilizing the projection basis
fu.' (s% so that the energy balance and reciprocity criteria are not automatically
satisfied . Multiplying equations (58) by u~*, ~')(x)/or')(x), and equations (59) by
u,' (') ( x), then integrating over a grating period, and making use of the bi-
orthogonality relation (34), we have the following matrix equations :

WY= UX+ UI,

	

(69)

DY=QX+PI,

	

(70)

where

Y= I=

565

60,, is the Kronecker delta, and the rest of the matrices are defined in Appendix B . In
(71), each element of the column vectors is itself a column vector, and the elements of
X and Y are related to the unknown field amplitudes listed in (60) and (61) . The
matrix D in (70) is diagonal, so vector Y can be expressed in terms of X without
numerical matrix inversion . Substituting the expression of Y into (69), we have

(WD -1Q-U)X = (U- WD -1P)I .

	

(72)

This is the final linear system of equations from which we numerically determine the
field amplitudes .

In order to solve the linear system (72) on a computer, we unavoidably have to
truncate the matrices. We designate N as the total number of terms retained in
Rayleigh expansions (we truncate the Rayleigh expansions symmetrically with
respect to the zero diffraction order) and M as that retained in the modal expansions .
The integers N and M are called the truncation orders . It is easily seen that for the
solution of (72) to be well (neither under- nor over-) specified, the two truncation
orders must be the same. Thus, the matrices W, U, P, Q, and D in (72) are 4N by4N
square matrices .

4. Numerical examples
In this Section we present some numerical results . The computer program is

written in Fortran 77 and double precision is used for real and complex arithmetic .
For the special case of non-conical mountings, the program has been checked using
published data with good agreement . For the general case, it meets the energy
balance and reciprocity criteria with reasonable accuracy . Table 1 tabulates TE and
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Table 1 . Numerical comparison with the results of Botten et al. for a metallic grating
in a non-conical mounting . Parameters : d=1-0µm, d1 =0.4001 µm, h=0.1 µm,
40 )=c(2)=c1 =1 .0, c 2 =(1 .5+il . 0) 2 , 2o=0 .8µm, 0=11 . 5 ° , 4=0° . Truncation orders:
Botten et al., M=20, N=51; this paper, M=N=31 .

Table 2 . Diffraction efficiencies (q), polarization angles (a, 6), and diffraction angles (0, ¢) of
a dielectric grating in a conical mounting . All angular values are in degrees .
Parameters : d=1-0µm, d1 =0.5µm, h=0-5µm, c(1)=c1=1.0, c(2) =c2 =2 . 25,
A0 =0.5µm. Incident polarization : a=45° , 5=90° . Incident angle: 8=4)=45° .
Truncation orders: M=N=31 .

TM diffraction efficiencies of a metallic grating in a non-conical mounting . The data
of Botten et al . are taken from table 1 of [6] . Note that Botten et al . adopted a hybrid
projection method that allows unequal truncation orders N and M . Clearly, the
agreement is very good, especially for the TE polarization .

To date, there are no numerical data, especially data of the polarization
parameters, for non-perfectly conducting lamellar gratings in conical mountings
available in the literature; therefore, we present some original data in the rest of this
section. Listed in table 2 are diffraction efficiencies (rl), polarization angles (a, 6), and
diffraction angles (0, 0) of a dielectric grating in a conical mounting (the parameters
are listed in the table caption) . Note that the incident plane wave is right-hand,
circularly polarized . Listed in table 3 are diffraction efficiencies (rl), polarization
angles (a, b), and diffraction angles (0, 0) of a highly conducting grating in a conical
mounting. The incident plane wave is linearly polarized with equal s and p
component amplitudes . In both cases, the truncation orders are chosen to ensure that
the accuracy of the data is better than one per cent (see discussion below) .

In figure 3 (a, b, c) we show the change of diffraction efficiencies tl and
polarization angles a and 6 of a small period dielectric grating as the incident
azimuthal angle 0 sweeps through the first quadrant . The incident plane wave is

Order q a 6 0 ¢

R_ 2 1 . 6137 x 10 -3 64.3182 -30.2984 45.0000 135 .0000
R_ 1 3 .8070x10 -3 65 .9715 -157.1961 30.0000 90.0000
Ro 1 . 8548 x 10-2 70.4908 -148-4611 45.0000 45 .0000
T_3 3 .3631 x 10 -2 51 .0569 32.2795 48 . 1897 153 .4349
T_ 2 1 . 0343 x 10-1 56.2437 110.2136 28. 1255 135 .0000
T- 1 3 . 1868 x 10-1 46.5484 99.0295 19 .4712 90.0000
To 1 . 4186 x 10 - ' 34. 2601 68.3735 28.1255 45 .0000
T1 3 .7827 x 10 -1 46. 3291 868095 481897 26.5651

Efficiency, TE Efficiency, TM
Diffraction

Order Botten et al. This Paper Botten et al. This Paper

R- 1 2. 8529 x 10 -2 2 . 8526 x 10 -2 1 .6772 x 10 -2 1 . 6756 x 10 -2
Ra 6.2128 x 10 -2 6 . 2124 x 10 -2 9.5755 x 10 -2 9 . 5799 x 10 -2
R1 4.6011 x 10 -3 4. 6011 x 10 -3 1 .2779 x 10 -3 1 . 2757 x 10 -3
T-, 3.8574 x 10 -2 3 . 8573 x 10 -2 2.1372 x 10 -2 2 . 1430 x 10 -2
To 4.6913 x 10 -1 4 . 6913 x 10 -1 3 . 9939 x 10 - ' 3 . 9985 x 10 -1
T 1 5 .4894 x 10 -3 5 . 4895 x 10 -3 3 .6226 x 10 -3 3 . 6378 x 10 -3
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Table 3. Diffraction efficiencies (q), polarization angles (a, 6), and diffraction angles (0, 0) of
a metallic grating in a conical mounting . All angular values are in degrees . Parameters :
d=1-0µm, d1 =0.5µm, h=1-0µm, E(1)=t1=1.0, E(2)=E2=(0.1+i5.0)2, A 0 =0.5µm.
Incident polarization : a=45 ° , 6=0°. Incident angle : 0=30 °, 4,=45° . Truncation
orders : M=N=51 .

4,

always p polarized and it strikes the grating from the optically denser medium at a
polar angle greater than the critical angle (for total internal reflection) . This
configuration is reminiscent of what occurs in a planar waveguide grating coupler for
a TM polarized guided-wave [20] . The reflected and the transmitted negative first
orders pass off at about 0 = 37° and 0 = 60 ° , respectively . It is evident that as soon as

is non-zero, the diffraction orders become elliptically polarized . The two first
orders are nearly circularly polarized at 4, 20° . Also, the senses of polarization of the
two first orders remain right-handed throughout the angular range of their existence .

Next, we illustrate the excellent convergence rate of the modal method . For this
purpose, we define a measure of error AN as follows

AN= 1og10 ff,f*

	

( 73 )

wherefN stands for any one of the physical quantities, such as a diffraction efficiency
or a polarization angle, computed with truncation order N, and f *=fN., where
N* > N is an integer . If fstands for the sum of the diffraction efficiencies for a lossless
grating,f *=1.0. Roughly speaking, the negative of AN gives the number of correct
significant digits in the numerical results .

Figure 4 shows the convergence of the sum of the diffraction efficiencies and the
efficiencies of the negative first orders in reflection and in transmission for a dielectric
grating. The physical parameters are the same as those of table 2 . The truncation
orderN varies from 11 to 61 in increment of 2, and N* = 63 . It is evident from the
figure that better than 1 % accuracy is achieved as soon as the truncation order is
greater than 11 . The convergence is not monotonic . The large oscillation in the
convergence sequence of the reflected order is probably due to the smallness of the
diffraction efficiency (see row 2, column 2 of table 2) . If we make a low-order
polynomial fit of each set of the data in the figure, the three resulting curves will have
more or less similar shapes and close locations . This implies that the energy balance
criterion can be used as a good accuracy indicator, thanks to our choice of the
homogeneous projection method .

Figure 5 shows the convergence of the diffraction efficiency and diffraction angles
a and 6 of the negative first order of a metallic grating . The physical parameters are
the same as those of table 3 . The truncation order N varies from 11 to 69 in
increments of 2, and N* = 71 . Since now the grating is metallic, the convergence in
this case is, as expected, slower than that of figure 4 . However, better than 1
accuracy can still be achieved with a truncation order of 40 or greater .

Order q a 5 0 0

R_2 7 . 3099 x 10 -2 62 .4788 52.7402 47.4606 151 .3249
R_ 1 1 . 3511 x 10 -1 15 .3476 -12.0484 22.5000 112.5000
R o 4. 2986 x 10 -1 41 .2528 171 .2140 30 .0000 45.0000
R1 3 . 0238 x 10 -1 75 .2325 168.7752 67.5000 22.5000
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Figure 3. Diffraction efficiencies q (a) and polarization angles a (b) and 3 (c) of a dielectric
grating versus the incident azimuthal angle 0 . All angles are measured in degrees .
Parameters : d=0-3µm, d 1 =0 .15µm, h=0.15µm, E(')=E1=2.25, E(2)=E2=1 .0,
A 0=0 .5 µm. Incident polarization : a=0° . Incident angle: 0=60° . Truncation orders :
M= N= 45 .
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Figure 4. Convergence for a dielectric grating . •, Sum of all diffraction efficiencies ; D,

diffraction efficiency of -1 order in reflection ; 0 , diffraction efficiency of -1 order in
transmission . The parameters are the same as for table 2 .
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Figure 5 . Convergence for a metallic grating . •, Diffraction efficiency of -I order; 0,
polarization angle a ; 0, polarization angle b. The parameters are the same as for table 3 .

As the authors of [5-8] have shown, one of the unique features of the modal
method is that it works very well even for deep, highly conducting gratings . This
feature is also true for the extension of the method to conical mounts as developed -in
this paper. This is understandable, since the fundamental analytical and numerical
issues for conical and non-conical mountings are essentially the same . For the sake of
saving space, however, we will not provide any numerical evidence here .

5 . Summary
In this paper, we have extended the rigorous model method of Botten et al . to the

case of conical mountings. A crucial step in accomplishing the extension is the field
decomposition discussed in Section 2 .2 . and Appendix A. The field decomposition
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reduces the vector-valued boundary-value problem givenn by (14) and (15) to a scalar
one given by (26), thus tremendously simplifying the subsequent analysis and
allowing the previous works ofBotten et al . and Suratteau et al. to be used here. The
completeness and orthogonality of the modal fields in the corrugated region are
carefully established. The computer program implementing the extended model
method can treat a plane wave of arbitrary angle of incidence and polarization . It
converges very well for highly conducting grating materials and very deep grating
grooves. We have included some original data of both diffraction efficiencies and
diffraction polarizations for conical diffraction configurations .

The mathematical formulation presented in this paper . has been kept general . In
fact, the explicit x dependence of c(x) andµ (x) given in (1) is not used, except for the
derivation of the characteristic equation and the eigenfunctions in Section 2 .4 .
Therefore, the formulation is valid for any periodic s(x) and µ(x) . However, it is
precisely the simple x dependence of c(x) and µ(x) in (1) that makes the easy
derivations in Section 2 .4. possible. For any other permittivity and permeability
variations, the solutions for the eigenvalues and eigenfunctions become very
complicated, and the modal analysis quickly loses its advantages over other grating
methods .

The present analysis can be easily extended to treat gratings of arbitrary groove
shapes and waveguide gratings with a number of uniform layers above and below the
corrugated region . These extensions will be the subject of a future paper .

Appendices
Appendix A
Theorem

Any solution of (14) and (15) can be decomposed such that

CH=/ _CH=))+CH=s),

where (Er, HZe ) )T and (Er, HZh)
)T are El and Hl , respectively, and they satisfy (14)

and (15) independently. The decomposition (Al) is, in general, unique .

Proof
Since there is no explicit y dependence in (14), any solution of (14) is necessarily

of the following form

where

2

c dx 2

ax) + ,C2 _ A2

k fz z d 1
-

i~ko
Adx

f2 )

(HZ) -
(

EZA(x, y))

(

EZA(x,y))=exp
(icy)

(rl AUx)H

	

)

	

(A 3)ZA (x, y)

	

(x)

Substituting (A 3) into (14), and eliminating the y-dependence, we have

+i lko
2(dx Z

~ 1

µ dx 2 dx)
+,C2_ AZ

I

(A 1)

(A 2)

=0. (A 4)
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Equation (A4) is a linear, two-dimensional vector-valued, second-order ordinary
differential equation. It, therefore, has four linearly independent solutions . Suppose
(E.A , HZA)T is E1 . Then, from (16 a)

nx(x)

	

l
= -i~ 1 k =

ko
d
dx~x(x) .

	

(A 5)

Substitution of(A 5) into(A 4) results in two second-order equations for ~ x(x) . These
two equations are not independent ; one can be derived from the other. Thus, we have
two linearly independent solutions of (A4) that satisfy the E1 condition (16a) .
Similarly, if we demand (Eax , H= x)T to be H1, then

_ 1 1 k z d
,(x) i t E ko dx (A 6)

and we have two linearly independent solutions of (A 4) that satisfy the H1 condition
(16 b) . Clearly, the solutions of E1 type and H1 type are linearly independent .
Therefore, any solution of (A 4) has the following form

Cnx(
UX)

	

A)x)
) =c('iw(j) +c~ 1̀w ) +c al(u ai) f cz~ (u j),

	

(A7)

where cx,, 1=1, 2, s = e, h are constants, (U(%-)' V `?)T and (vxi) , uxi))T are E1 and H1
solutions of (A 4) respectively. So, the decomposition (A 1) is always possible .

Next, we impose the pseudo-periodic conditions (15) on the general solution
(A 7) . This leads to the following characteristic equation

where

UAt = uN(d/2) - exp (iaod) uzi ( - d/ 2)
V(-' ) A'j(d12)

	

At

UAt' = uA "(d/2) - exp (iaod) uzsI ( -d/2)

VTi ' = vT;'(d/2) - exp (iaod) vx'1 '( - d/2) .

(A 9)

By elementary row manipulation and making use of (A 5) and (A 6) for the E1 and H1
solutions, it can be shown that the two off diagonal two-by-two-matrices in (A 8) can
be made zero. Therefore, the E 1 and H1 solutions of (A 4), and hence those of (14),
satisfy the pseudo-periodic conditions (15) independently .

Suppose the decomposition (A 1) is not unique . Then we may have a decom-
position of the zero field into two non-zero orthogonal modal fields . Furthermore,
each of these fields satisfies both the E1 and the H1 conditions simultaneously .
However, this leads to kz + 2 2 = 0, a condition which is, in general, not true . This
completes the proof of the theorem .

UOzi
Uzi

U~l
Uxi

VTI)
V(h)

VS i
Vzi =0, (A 8)

VAt

Vzi
Vzi
V~i

UAt
Uzhi

UA2
U(h)
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Appendix B
As in the main text of the paper, j=1, 2, and s=e, h. In (58) and (59)

1(Z)= Iz') exp [-i,o )h/2] .

For the sake of clarity, the matrices in (69) and (70) are expressed in block forms,
followed by the definitions of each sub-matrix .

Q=

I U(e)

	

0

	

0

	

0
•

	

UTe) 0 0
•

	

0 U'rh) 0
,0

k2

	

(s)2

	

1(s)h
A(s) -	z	 + ~ in tan ^'m
m - A(M.)

	

2 ,

W=

0

	

0

CU)

	

U)

	

k
T(jI =1kO_j2 ,

	

T( =ikO (J)2 ,

	

T3) =ikpy(J) 2 .

W(h)A(e) W(h)B(e)

- W(h)A(e) W(h)B(e)

U=

D=2

r3(h)/

I U(e)

0
0
U(e)

0

	

0
0

	

0

U(s) = (

	

+(s))
FOR ` enr um sr

L. Li

2

	

(s)2

	

^
9(s)

h
B(,h) = - k=	

~)m
	 ctan m

2 ,

•

	

0
•

	

0
U (h)

	

0
•

	

U( h)I

A (e )

	

0

	

0

	

0 '
B(e) 0

	

0
0 A (h) 0

0

0

	

0

W(e)A(h) W(e)B(h)

- W(e)A (h) W( e)B (h)

1

	

1
1
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To get the expression for matrix P, we only need to reverse the sign of #0 in (B 7) . In
(B 10) and (B 11) the inner products are those defined in (28) and (37), and the
subscript s indicates that the weight function a(s) should be used in the integral . . By
using (55) and (47), it can be shown that the two sub-matrices in (B 11) are related
such that

(B 1)

(B 2)

(B 3)

(B 4)

(B 5)

(B 6)

. (B 7)

(B 8)

(B 9)

(B 10)

(B 11)

(B 12)

Hence, there are five sub-matrices involving the eigenfunctions to be calculated . It
can be shown that these sub-matrix elements can be expressed in terms of the left and
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right limits of u („',) and its derivative at ±d l /2, if the periodic medium is characterized
by (1) .

Since wl„') and ty) are proportional to k=, the matrices defined in (B 4)-(B 7)
become block-diagonal when kZ =O. Of course, this means that in non-conical
mountings, EZ and H= are de-coupled .
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