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Modal analysis and suppression of the Fourier
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The Fourier modal method (FMM), often also referred to as rigorous coupled-wave analysis (RCWA), is known
to suffer from numerical instabilities when applied to low-loss metallic gratings under TM incidence. This
problem has so far been attributed to the imperfect conditioning of the matrices to be diagonalized. The present
analysis based on a modal vision reveals that the so-called instabilities are true features of the solution of the
mathematical problem of a binary metal grating dealt with by truncated Fourier representation of Maxwell’s
equations. The extreme sensitivity of this solution to the optogeometrical parameters is the result of the exci-
tation, propagation, coupling, interference, and resonance of a finite number of very slow propagating spurious
modes. An astute management of these modes permits a complete and safe removal of the numerical instabili-
ties at the price of an arbitrarily small and controllable reduction in accuracy as compared with the referenced
true-mode method. © 2007 Optical Society of America

OCIS codes: 050.1950, 050.1960.
n
m
t
m
m
l
m
r
m
t
c

2
T
w
t
r
m
o
f
g
[
l
c
t
�
t
c
1
s

. INTRODUCTION
he Fourier modal method (FMM) has been considered as
simple and efficient tool for one-dimensional (1D) grat-

ngs analysis since 1996 when the problem of TM inci-
ence on gratings was given a sound solution [1–3]. Nu-
erical studies have shown that the FMM can deal

fficiently with low-loss metals in the visible wavelength
ange [4,5]. However, the method still faces difficulties
hen used in silver, gold, or copper gratings further in the

nfrared. Popov et al. [6] have shown in a case study that
he numerical results given by the FMM exhibit strong
nd unpredictable instabilities. These were attributed to
he imperfect conditioning of the matrices to be diagonal-
zed. This statement was later questioned by Watanabe
7]. A heuristical solution was proposed to introduce arti-
cial metal losses in order to damp the instabilities and/or
o apply two-step truncation [6]. Such strategy amounts
o treating a different although neighboring electromag-
etic problem.
The present paper undertakes the analysis of the test

tructure considered in [6,7] from a modal standpoint.
he source of instability will be identified as the excita-
ion of high-order spurious modes generated by the trun-
ation of the Fourier series representing the Maxwell
quations. These modes will then be shown to possibly
ead to high-contrast interferences of very high sensitivity
n the optogeometrical parameters of the excited struc-
ure. Finally, an astute mode-filtering operation will
ake the transformation of the mathematically exact but

umerically highly sensitive solution of the truncated
ourier representation of Maxwell’s equations into a
1084-7529/07/123781-8/$15.00 © 2
early exact and stable solution. This analysis will not be
ade from a mathematical standpoint. We will explore

he very grating structure analyzed in [6,7] and bring as
uch as possible a qualitative physical insight to its nu-
erical analysis. The FMM was implemented with its

ast known development into an existing set of grating
odeling codes. As in [6], the method that is used as the

eference is the true-mode method (TMM) [8,9] with its
ost recent developments [10]. This gives us confidence

hat the comparison is made in the best common-mode
onditions.

. FOURIER MODES
he binary grating is illuminated by a TM polarized plane
ave (the H field is parallel to the grating grooves) under

he incidence angle �. Figure 1 reproduces the numerical
esults obtained in [7] for a highly conductive grating
ade of a lossless metal with ns=0+ i10. The minus-first-

rder diffraction efficiency is computed by the FMM as a
unction of the air gap between the metal walls of the
rooves. The values of the parameters are the same as in
7]. The grating period � and depth are 500 nm, the wave-
ength � is 632.8 nm, and the incidence angle � is 30°. The
urve of Fig. 1 is obtained with a number N=31 of diffrac-
ion orders (truncation number), which defines the N
N matrix to be diagonalized. The FMM mathematical

reatment is made according to [2]. The efficiency is cal-
ulated for 1001 values of the groove width from
0 nm to 490 nm with constant interval. As already
hown in [6], the FMM results appear as a noise on the
007 Optical Society of America
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mooth baseline given by the TMM; a zoom on any low-
oise section of the curve reveals that the noise is present
verywhere.

The grating modes of the FMM are obtained as a solu-
ion of an eigenvalue problem by matrix diagonalization.
he total number of considered modes is equal to the
runcation number or to the matrix dimension. The grat-
ng modes of the TMM are the natural lamellar structure

odes satisfying the actual boundary conditions, i.e., the
ispersion equation of the true binary rectangular grating
10]. In what follows the effective index of a grating mode
s defined as the ratio between the eigenvalue of an FMM
r a TMM solution (i.e., the mode propagation constant
ormal to the structure plane) and the vacuum wavenum-
er k0=2� /�. In the present lossless structure the effec-
ive index of a propagating mode has a nonzero real part
nd a zero imaginary part, whereas the nonzero part of
n evanescent mode is the imaginary part that is respon-
ible for the mode field damping. The effective index of a
ropagating mode of plasmonic nature is real and larger
han 1, whereas that of a propagating dielectric mode is
eal and smaller than the refractive index in the grooves
here less than 1).

Table 1 gives the list of the effective indices of the first
nd the last grating modes propagating up and down the
rating grooves as given by the TMM and the FMM for a
roove width of 93.518 nm and truncation number N
31. The chosen groove width corresponds to the stron-
est instability shown by the arrow in the graph of Fig. 1.
he TMM modes are listed in decreasing order of the
quare of the real part of their effective index. The eva-
escent modes of midorder number are not relevant in the
resent analysis and are therefore left out. For a given
roove width all TMM modes of the TM polarization are
vanescent except the single plasmon mode of zeroth or-
er. More complicated is the ordering of the list of the
MM modes. Table 1 reveals that all TMM modes up to
rder N−3 have an FMM mode counterpart, but at the
nd of the FMM modes spectrum there are a restricted
umber of modes of completely different character that do
ot have their TMM counterpart. This is undoubtedly the
esult of the truncation of the infinite matrices to be di-

ig. 1. Groove width dependence of the minus-first-order dif-
raction efficiency with �=632.8 nm and �=500 nm.
gonalized. These modes will hereafter be called “spuri-
us” modes, although they are needed to complete the set
f eigenvectors for expressing a correct solution. It is re-
arkable that all these spurious modes have a plasmonic

haracter since their effective index is real and larger
han 1. This characteristic represents a first criterion for
dentifying them in the grating mode spectrum. Such

odes propagate without attenuation in the case of a loss-
ess metal.

Having identified the FMM modes without a TMM
ounterpart, we have analyzed how this group of modes
volves with increasing truncation number. The results
re in Table 2, where the effective index of all plasmon-
ike modes found by the FMM is given with increasing
runcation number. With the increase in truncation num-
er it is found that TMM and FMM modes have their
ounterparts except for a few modes of order close to the
runcation number. All common modes exhibit a regular
onvergence behavior as illustrated in Table 2 with the
xample of the plasmon mode of order zero. The FMM
purious modes behave very differently with increasing
runcation number: there is no clear tendency in the evo-
ution of their effective index. It is an interesting feature
f the spurious modes that their unstable effective index
s always notably larger than the true plasmon mode ef-
ective index. Once the fundamental plasmon mode effec-
ive index is known or even estimated, this feature can be
sed as a second criterion to identify them within the
ode spectrum.
Figure 2 illustrates the transverse magnetic field dis-

ribution of a spurious plasmon mode and of the funda-
ental plasmon mode over one period across the grating

rooves with a groove width of 93.518 nm. Unlike in the
undamental plasmon, the real and imaginary parts of
he spurious modal field oscillate at the largest spatial
requency of the Fourier series, and their field has a
arger amplitude in the metal ribbon. This again charac-
erizes the spurious modes as modes of high order close to
he truncation number, whereas their plasmon-like char-
cter would place them at the beginning of the modal

Table 1. Complex Effective Index of a Few
First- and Last-Order TMM and FMM Modes with

Truncation Number N=31a

Mode
order

True Modes Fourier Modes

Real Imag. Real Imag.

0 1.10459 0.0 1.10476 0.0
1 0.0 3.16773 0.0 3.23267
2 0.0 6.66824 0.0 6.99719
3 0.0 10.0311 0.0 10.0311
… … … … …

N−6 0.0 18.5053 0.0 20.5776
N−5 0.0 19.1612 0.0 23.9795
N−4 0.0 19.8468 0.0 26.1466
N−3 0.0 20.268 5.3312 0.0
N−2 0.0 20.5031 6.09379 0.0
N−1 0.0 21.1819 12.5095 0.0

aAt the end of the FMM modal spectrum, there are three spurious modes having
character completely different from the corresponding true modes of the same

rder.
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pectrum and can be used as a third criterion for identi-
ying them within the mode spectrum.

The appearance and behavior of spurious modes can be
xplained by the well-known Gibbs phenomenon [11,12].
he Fourier series at a jump discontinuity has large os-
illations near the jump. The amplitude of oscillations is
ot reduced as the number of representing harmonics in-
reases, but it approaches a finite limit. When the func-
ion changes sign at the jump (permittivity function in
he case of a metal grating), such oscillations can increase
he number of zero crossings of the truncated Fourier se-
ies. This corresponds physically to the inclusion of new
etal-like layers in one grating period. Every additional
etal layer supports at least one plasmon mode; thus the

umber of plasmon-like modes increases with the number
f such artificial interfaces.

Table 2. Evolution of the Effective Index of the Spu
Truncatio

Truncation
Number N−1 N−2

31 12.5095 6.09379
33 10.5525 7.30255
35 19.3175 18.8975
37 11.8483 7.49204
39 36.0806 13.0032
41 27.0125 16.1508
43 12.2049 8.76289
45 16.4006 8.19296
47 15.017 8.60048
49 50.1534 13.6935
51 20.7432 8.67485
53 72.2236 14.7316
55 32.5439 16.1913
57 26.8626 18.9459
59 75.1167 15.2807
61 26.7488 19.5400

121 38.8897 32.1015

aThe last column gives the effective index of the regular plasmon mode as a ref

ig. 2. (Color online) Example of FMM modal H field of mode
−1 (multi-peaked curve, red online) and regular plasmon mode
(lower curve, black) for the truncation number 31. The groove is

ocated between x=0 and 93.518 nm.
Although such a consideration brings some light and
elps explain the phenomenon, it does not deliver an ex-
licit analysis of the problem. Together with the permit-
ivity ��x�, the inverse pemittivity 1/��x� as well as the
eld Hy�x� are represented in the FMM by their Fourier
eries. The new technique of Maxwell’s equation trunca-
ion of [1], which is a big step forward for the FMM,
akes a physical interpretation even more involved. This

ll renders a fine modal analysis of the truncated Fourier
ransformed problem and of its spurious modes very com-
licated if not impossible.
Figure 3 illustrates the behavior of the spurious mode

ffective indices versus the groove width in the
10–290 nm interval (the largest range with the presence
f four spurious modes). The truncation number is 31. It
s clear that the mode effective index behavior is regular
ithout any sign of instability unlike what one would ex-
ect from the noise on the minus-first-order diffraction ef-

FMM Modes in a Lossless Metal Grating with the
mber Na

N−3 N−4 Mode 0

5.3312 — 1.10476
5.33273 6.347 1.10570
6.43998 6.00416 1.10520
5.98195 — 1.10423
7.77949 6.2364 1.10400
7.2718 6.89867 1.10455
6.73086 — 1.10506
7.2571 — 1.10496
7.51235 — 1.10450
9.58697 7.57716 1.10428
8.37703 — 1.10449
9.98877 8.19877 1.10479
10.0785 8.52735 1.10483
9.70253 9.14669 1.10460
11.2021 8.97274 1.10443
10.5004 9.5878 1.10448
19.2355 18.3573 1.10459

ig. 3. (Color online) Effective index spurious modes depen-
ence versus groove width.
rious
n Nu

erence.
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ciency in Fig. 1 in the same interval. This leads one to
nfer that the observed instabilities do not have a numeri-
al origin but can be explained by an interference effect of
he spurious modes in the grating layer.

This section can be concluded by the following state-
ents:

• The “spurious” modes do not exist physically; they
re a mathematical artifact due to the truncation of an in-
nite set of equations.
• The “spurious” modes appear only in structures

here there is a transition from a dielectric to a metal
haracter;

• The set of “spurious” modes is limited to a few mem-
ers regardless of the truncation number; this property
as been observed in structures having a wavelength
cale period and should not be extrapolated without
erification.

. FOURIER MODE INTERFERENCE
rom Tables 1 and 2 one sees that the spurious Fourier
odes may have a very large effective index. These modes
ill consequently experience close to unity reflection at

he grating layer interfaces because of the large imped-
nce mismatch. For example, under the conditions of
able 1, mode N−3 experiences a power reflection coeffi-
ient into itself of 0.99 at the air interface and 0.997 at
he bottom metal interface. This implies that there can be
n the lossless metal case a very large energy accumula-
ion for this mode between both grating layer interfaces if
he Fabry–Perot resonance condition is fulfilled. Although
he number of spurious modes is limited, the dependence
f their effective index on the structure parameters and
ncident conditions is extremely sensitive and rather com-
licated; therefore one can expect a high density of sharp
esonances. However, such resonances are not to be inter-
reted as noise; they do behave as resonances. Let us con-
ider the example of an instability peak at the groove
idth of 93.518 nm and investigate its behavior in a short

ange of groove width from 93.4 nm to 93.6 nm. The dif-
raction efficiency represented in Fig. 4 reveals a typical
rue resonance curve without any sign of numerical insta-

ig. 4. Resonance effect of spurious Fourier mode N−3 self-
nterference in the grating layer.
ility. At any point of the graph in Fig. 1, a fine scan of the
roove width reveals a high density set of resonances of
ifferent width and strength as shown in Fig. 5.
Figure 6 illustrates the resonant accumulation of en-

rgy resulting in a large H field amplitude inside the grat-
ng layer related with the spurious Fourier modes. The
arameters correspond to the exact mode N−3 resonance
osition of Fig. 4. The H field distribution is typical for a
tanding wave inside a Fabry–Perot resonator. At the
eld peaks, the H field amplitude reaches as much as 67
imes the incident field amplitude. This anomalously
trong field enhancement is dramatically illustrated by
he scale of the 3D graph, where the incident field pattern
or z�0 appears to be flat and close to zero and where all
ther modal fields are by far dominated by the mode N
3 resonance. The fact that there is a large field ampli-

ude in the ideal metal region highlights the nonphysical
haracter of such artificial solution.

At this stage it can be concluded that the instabilities
xhibited in Fig. 1 have nothing to do with numerical ar-
ifacts. They are simply and meaningfully the conse-
uence of the Fourier mode interference in the grating
ayer. The effective index of such modes is so large and
heir Fabry–Perot resonance in the grating depth is so
trong with so high a quality factor that the least change

ig. 5. Set of resonances under a fine scan of the groove width.

ig. 6. (Color online) Field enhancement in the grating region
nder spurious mode resonance. The air groove is located be-
ween 0 and 0.187 of the X /period axis.



o
t
t
b
r
e
c

4
F
P
T
l
l
m
p
p

a
t
t
a
w
p
F
i
g
d
s
m
t
i
d
p
c
s
e
m
F
c
t
c

a
r
i
c
r
f
t
e
f
t
t
f
r
t
w
r
T

d
F
s
v

s
m

F
b

F
l
m

F
c

Lyndin et al. Vol. 24, No. 12 /December 2007 /J. Opt. Soc. Am. A 3785
f depth or of line/space ratio or in wavelength leads to
he suppression of the observed resonance, or possibly to
he resonance of another spurious mode or to the coupling
etween two such modes. The noisy curve of Fig. 1 thus
epresents the exact solution of the considered math-
matical problem with a given size of truncated matrix
ontaining the coefficients of the differential system.

. CURING THE FOURIER MODAL METHOD
OR METAL–DIELECTRIC STEP
ERMITTIVITY PROFILES
he modal phenomenology of the previous section sheds

ight on what the FMM actually does when it fails to de-
iver the exact solution of the step permittivity profile of a

etal–dielectric structure. This does not yet provide the
ath from the noisy pattern of Fig. 1 to the smooth curve
rovided by the referenced TMM.
Popov et al. [6] have suggested artificially adding some

bsorption in the grating structure to damp the instabili-
ies. From the above consideration it is clear why such in-
uition does lead to an improvement: with large enough
bsorption the propagation length of the spurious modes
ill decrease, as for instance that of a real short-range
lasmon, with a resulting decrease of the corresponding
abry–Perot quality factor and of the contrast of the noisy

nterference pattern. With the modal understanding
ained in the previous section it is now possible to ad-
ress the problem anew and find out a finer, and at the
ame time more general, solution. Since the spurious
odes are the effect of the truncation of the infinite ma-

rix containing the coefficients of the differential system
n combination with the permittivity step transition from
ielectric to metal character, the problem can be ex-
ressed as “What should be kept of these modes to ensure
ontinuity toward the true solution?” Leaving aside a
ingle one of these spurious modes in the field-matching
quations leads to a wrong solution because the eigen-
ode set becomes incomplete. As Table 2 suggests, and as
ig. 2 confirms, these spurious TM modes exhibit an os-
illatory character with a spatial frequency that is related
o the spatial frequency of the highest-order harmonics
onsidered in the truncated system. Thus, these modes

ig. 7. Diffraction efficiency of the minus first order calculated
y the FMM with the described spurious modes filtering.
re located at the end of the modal spectrum, and for this
eason one can reasonably expect that with the increase
n the truncation number these modes should play a de-
reasing role in the convergence process. This intuitive
easoning leads us to keep the spurious plasmon modes
or the sole purpose of the field matching and to forbid
hem to propagate through the grating layer in order to
xclude their unpredictable high-contrast interference ef-
ect. This implies that the spurious plasmon mode ampli-
udes are set to zero once they have been used in the in-
erface field-matching equations. In other words, the loss
actor of these modes is set to infinity. Applying this spu-
ious mode management to the structure of Fig. 1 with
he FMM gives the diffraction efficiency curve of Fig. 7,
here there is no longer a trace of any instability and the

esults are very close to those given by the reference
MM.
Figure 8 presents the difference of minus-first-order or-

er diffraction efficiency calculated by the TMM and the
MM considering 31 and 61 modes and shows that the
uggested mode management enables the FMM to con-
erge toward the exact reference result.

Figures 9 and 10 illustrate the H field distribution in-
ide the grating region under the conditions of Fig. 6 with
ode filtering in the FMM (Fig. 9) and calculated by the

ig. 8. (Color online) Difference of diffraction efficiencies calcu-
ated by TMM and FMM for 31 (upper curve, black) and 61

odes (lower curve, red online).

ig. 9. (Color online) H field distribution in the grating region
alculated by the FMM with mode filtering.
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eference TMM (Fig. 10). These figures show that the two
ethods give a close to identical field distribution, but

hat the field calculated by the FMM still exhibits a
umpy character, while the field calculated by the TMM
as a smooth and physically correct shape. The suppres-
ion of the spurious mode resonances thus leads to the ac-
ual physical field distribution inside the grating region.
n contrast to Fig. 6, the field inside the ideal metal region
n Figs. 9 and 10 is now close to zero, and it is clear that
he remaining standing-wave field character in the grat-
ng region is due to the Fabry–Perot resonance of the fun-
amental plasmon mode.
We have so far identified and characterized the Fourier
odes responsible for the observed instabilities of the
MM, we have explained the high-contrast interference
nd resonance mechanisms involved, and we have sug-
ested a mode-filtering principle permitting the suppres-
ion of the instabilities while still satisfying the boundary
onditions of the electromagnetic problem. Unlike in [6,7]
here the structure as a whole is made more lossy, which
ffects all modes, the present approach is highly selective
nd treats the actual electromagnetic problem. The devel-
pment of a safe filtering algorithm can now be under-
aken on the basis of the following mode selection criteria:
1) The spurious modes are always very slow waves;
herefore the only modes with which there may be confu-
ion are the true plasmon modes. (2) Their effective index
s much larger than that of a true slow wave plasmon. (3)
heir propagation constant is always extremely sensitive
o any change of parameter unlike that of the true plas-
on modes. (4) Their field always has the largest spatial

requency corresponding to the truncation number. (5)
heir field has high amplitude and high spatial frequency

n the metal parts.

. SUPPRESSING THE FOURIER MODAL
ETHOD INSTABILITIES FOR ARBITRARY
ETAL–DIELECTRIC PROFILES

he unpredictable high-contrast interferences of spurious
odes as well as between them is dangerous in the case of
onlamellar metal or metal–dielectric gratings of an arbi-
rary groove profile where the slicing technique is used, as
s most often the case. In such a general case the grating
ayers are rather thin, but high-quality Fabry–Perot ef-

ig. 10. (Color online) H field distribution in the grating region
alculated by the reference TMM.
ects persist even in the case of lossy metals for two rea-
ons: First, the effective index of the spurious modes can
e so large that the Fabry–Perot modes might not all be
ut off. Second, the slices are usually so thin that the spu-
ious modes’ damping coefficient may be small enough to
ermit resonances within the slice. The persistence of
purious mode resonances in thin lossy metal grating
lices is clearly evidenced in Fig. 11, showing the diffrac-
ion efficiency of the minus first order in a binary grating
ayer of 20 nm thickness only under the excitation condi-
ions and same period as in Fig. 1. The metal refractive
ndex is 0.5+ i10. This case is ten times more lossy than
hat considered in [7]; nevertheless, the diffraction effi-
iency still reveals strong interference instability. Figure
1 shows that the suggested spurious mode filtering com-
letely removes the instabilities. This thin-grating result
mplies that the approach suggested in [6], consisting of
ntroducing higher artificial losses in the structure, would
ead here, as well as in the case of the sliced arbitrary pro-
le hereunder, to a persistence of the instabilities.
Having evidenced the role of spurious modes in a thin

ossy slice, we now consider a complete nonlamellar grat-
ng groove. The chosen example is that of a sinusoidal

etal grating profile because there is for this profile an
xact reference solution by application of the C method
13,14]. The smooth sinusoidal profile will be cut up into a
umber of horizontal slices. A complex refractive index of
s=0.5+ i10 is considered, which is very close to the gold
efractive index at the incident wavelength of 1550 nm.
he grating period is 1500 nm, and the peak-to-trough
rating depth is 500 nm. The incident angle is 30 deg un-
er TM polarization. The chosen number of slices of
0 nm thickness is 50. The diffraction efficiency of the mi-
us first order versus the number of modes (truncation
umber) is presented in Fig. 12 for the FMM method
ithout (middle curve, red online) and with (lower curve,
lue online) the suggested mode filtering and for the
MM method (upper curve, green online). The horizontal

ine corresponds to the reference value of the diffraction
fficiency of a sinusoidal grating calculated by the C

ig. 11. (Color online) Diffraction efficiency of the minus first
rder of a 20 nm thin lossy metal grating without (noisy curve,
lack) and with (smooth curve, red online) spurious modes
ltering.
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ethod. It is worth noting that the C method requires
nly ±7 orders (15 Fourier modes) to provide 10−8 accu-
acy.

This last figure, representing the convergence rate of
he different methods, teaches us the following:

• The interference of spurious modes in sliced metal
ratings provokes instabilities in the convergence curve
ven in the case of lossy metals in the near-infrared spec-
rum.

• The suggested spurious mode filtering ensures a
mooth convergence curve and offers the possibility of us-
ng asymptotic methods to improve accuracy of the result.

• The initial convergence rate of the TMM in a sliced
rating is much faster than that of the FMM.

It should be pointed out that the example of a sinu-
oidal grating as a nonlamellar profile was chosen here
nly because it permits a comparison with a reference
ethod. A sinusoidal profile is actually not the type of

rofile for which a slicing modal method is best adapted
ecause of the presence of corners resulting from the
taircase approximation and especially of the nonrealistic
uty cycle of the first and last slices. The question of the
onvergence rate among the three considered modal ap-
roaches should consequently not be considered as settled
y this numerical experiment, the main teaching in Fig.
2 being that of the persistence of the instabilities in non-
amellar profiles even in the presence of lossy metals and
heir removal by means of the proposed filtering principle.
he convergence behavior of the TMM versus the number
f slices and the number of modes in a sinusoidal metal
rating has been exhaustively investigated [15] and will
e reported elsewhere.

. CONCLUSION
he above modal analysis of the Fourier modes shows
hat the failure of the Fourier modal method (FMM) to
rovide reliable results in the case of metal–dielectric

ig. 12. (Color online) Diffraction efficiency of the minus first
rder of a sinusoidal grating calculated by the C method (hori-
ontal line) and for a sliced grating calculated by the FMM with-
ut (middle curve, red online) and with (lower curve, blue online)
purious modes filtering and calculated by the TMM (upper
urve, green online).
ratings under TM incidence cannot be accounted for by
umerical instabilities. These instabilities are actually
he deterministic result of the interference, coupling, and
esonance effects of plasmon-like Fourier modes gener-
ted by the truncation of the infinite matrix containing
he coefficients of the differential system. The solution of
his system is highly sensitive to the optogeometrical
rating parameters because the involved spurious modes
re very slow waves of very high spatial frequency expe-
iencing high reflection at the border of the grating region
nd grating slices.
The present modal analysis of the problems faced by

he rigorous coupled-wave analysis (RCWA) or the FMM
lso gives a hint as to how to process these spurious
odes in the objective of getting close to the exact solu-

ion while removing the instabilities. It was found on the
asis of a sole physical rationale, but without mathemati-
al demonstration, that keeping the spurious modes for
atisfying the boundary conditions and forbidding their
ropagation suppresses the instabilities completely and
ermits a smooth, although slow, convergence toward the
xact solution.

It was also shown that the instabilities persist in shal-
ow gratings and, most important, in arbitrary profile

etal–dielectric gratings in the presence of lossy metals,
nd that the proposed filtering principle suppresses the
nstabilities.

It can be considered that the field of usability of the
MM or the RCWA has now been opened to arbitrary 1D
ratings under arbitrary incidence conditions. The true-
ode method remains the reference method for metal–

ielectric structures under TM incidence. It also provides
ery quickly and with a restricted number of modes a re-
ult that is close to the exact solution.

The comparison between methods that has been
chieved in the present paper has the character of an ob-
ective and up-to-date comparison in that the different

ethods have been implemented with their last known
mprovements and that they have been homogeneously
mplemented at an identical level of highly professional
oding methodology and skills. The reader may check the
esults of this paper by using the free codes available at
ww.mcgrating.com.
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