
Abstract. The method is described and the results are given
of a calculation of the diffraction of a finite Gaussian light
beam by a finite grating. It is shown that a waveguide grating
can be used as a mirror in a plane ^ plane cavity. An exper-
imental demonstration is reported of the operation of a
waveguide mirror in a dye microlaser.

1. Introduction
The total reflection of light from the surface of a corrugated
waveguide, discovered over ten years ago [1], is still being
investigated intensively because of practical applications of
this phenomenon in a number of optical devices [2]. The
problem of reflection of finite-size light beams from infinite
waveguide gratings has been studied quite thoroughly [3], but
the reflection of such beams from finite waveguide gratings
has not yet been discussed. A similar problem of coupling
light into a waveguide by a finite grating with simultaneous
excitation of oppositely directed modes was considered ear-
lier [4] for normal incidence of a Gaussian light beam, which
is of practical interest and important. We shall also limit
ourselves to a near-normal incidence of a light beam on a
grating. After solving the problem of reflection of light, we
shall tackle the coupling of light into a waveguide. This will
allow us to verify our results.

2. Theoretical analysis
Fig. 1 shows schematically the interaction of a light beam
with a finite waveguide grating. We shall begin by consider-
ing the normal incidence of a finite light beam on an infinite
waveguide grating on the assumption that we know the sol-
ution to the problem of diffraction of a plane wave incident
on such a grating at an angle y. The diffraction process can
then be described by the response coefficients G � � � � R, T,
E, H ), where GR � R��� and GT � T ��� are the complex
amplitudes of the reflected �R� and transmitted �T � waves;
GE � E ��� and GH � H ��� are the complex amplitudes of
the electric �E � and magnetic �H � fields inside the wave-
guide. The guided modes, which are the eigensolutions of the
problem, correspond to poles of the dependences of the
response coefficients on the projection of the wave vector

of the incident wave [5]. When two guided modes are excited
simultaneously, these dependences have two closely spaced
poles and near these poles the response coefficients can be
expanded into series:

G r�b� � b r
1

~a1 � ib
� b r

2

~a2 � ib
� cr0 � c r1 �iDb� � c r2 �iDb�2 � . . . ,

(1)

G r�Db�� b r
1

a1� iDb
� b r

2

a2� iDb
�cr0 �c r1 �iDb��c r2 �iDb�2�. . .,

where

Db � bÿ b0; b � knc sin y ;

b0 � knc sin y0 � ÿ0:5 Im�~a1 � ~a2�; a1 � ~a1 ÿ ib0 ; (2)

a2 � ~a2 ÿ ib0 ;

Re ~a1 and Re ~a2 are the coefficients representing the total
losses experienced by the guided modes or the widths of
the poles; Im ~a1 and Im ~a2 are the positions of these poles
or resonances; b �1 and b �2 are the coupling coefficients of the
relevant amplitudes of the waves and of the incident plane
wave; c �0 , c

�
1 , and c �2 are complex coefficients; � is the mis-

match of the propagation constant b; �0 is the average `re-
sonant' angle; k � 2=� is the wave number; nc and ns are the
refractive indices of the incident and transmitted waves.

When we deal with the interaction of a light beam with an
infinite waveguide grating, the beam is usually represented by
a complex amplitude q�z� in the plane of the grating, satisfy-
ing the normalisation condition:�1

ÿ1
q�z�q ��z�cos y z � 1 . (3)
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Figure 1. Interaction of a cylindrical light beamwith a waveguide grating
of finite dimensions.



We shall at first assume that the amplitude of the incident
beam is equal to zero outside the region [0, L ], i.e. we shall
consider a finite beam. Representation of the amplitude
q�z� in the form of a sum of plane waves

q�z� � 1������
2p
p

�1
ÿ1

Q�Db�exp�iDbz�b , (4)

where Q�� � is the Fourier transform of q�z�, makes it pos-
sible to write down the response function f ��z�:

f r�z� � 1������
2p
p

�1
ÿ1

G r�Db�Q�Db�exp�iDbz�b . (5)

The Fourier transforms of the functions described by the set
of expressions (1) and the convolution properties of the func-
tions yield

f r�z��b r
1 f1�z��b r

2 f2�z��cr0 q�z��cr1 q0�z��c r2 q 00�z� � . . . ,

(6)

where

fi�z� �

FLi exp�ÿa��zÿ L�� ;L� z� z
0 exp�ÿa��zÿ z 0��q�z 0�z 0 ; 0 < z < L ; �Re a� > 0� ;

0 ; z � 0 ;

8>>>><>>>>: (7)

FLi �
�L
0

exp�ÿai�Lÿ z 0��q�z 0�z 0 (8)

or

f��z� �

0 ; L � z ;� L
z exp�ÿa��zÿ z 0��q�z 0�z ; 0 < z < L ; �Re a� < 0� ;

F0� exp�ÿa�z� ; z � 0 ;

8>>>><>>>>: (9)

F0i �
�L
0

exp�aiz
0�q�z 0�z 0 . (10)

Formulas (6) ^ (10) give the solution for the response
functions of a finite beam incident on an infinite waveguide
grating. Outside the illuminated part of this grating the equa-
tions yield two response functions, which can be regarded as
the eigensolutions which exist for a corrugated waveguide
(modes I and II, governed by the poles a1 and a2, respec-
tively):

f r
I �z� � C1b

r
1 exp�ÿa1z� ,

(11)
f r
II �z� � C2b

r
2 exp�ÿa2z� .

If for the normal incidence of a light beam we assume that
Re a1 > 0 and Re a2 < 0, then

C1 � FL1exp�a1L� ;L� z ,
(12)

C2 � F02 ;
z� 0 .

These modes are described by the following response
functions:
ö the amplitude of a wave emitted into a medium with a
refractive index nc and proportional to bR

� ;
ö the amplitude of a wave emitted into a medium with a
refractive index ns and proportional to bT

� ;
ö the complex amplitude of the electric (E ) and magnetic
(H ) fields inside the waveguide, proportional to the coupling
coefficients bE

� and bH
� , respectively.

The energy flux inside the waveguide can be described by

S�z� � he Re
�
f E�z�� f E�z���	 , (13)

where he is the effective thickness of the waveguide. The
positive sign of S�z� corresponds to the energy flow in the
direction of the z axis and the negative sign corresponds to
the opposite direction. If a waveguide does not introduce
additional dissipative losses, the energy flux in the waveguide
at the edge of the unilluminated region should be equal to the
total energy emitted by the whole of this region.We therefore
have

S�L� � heIjFL1j2Re
�
bE
1 �bH

1 ��
� � PR

1 � PT
1

for the region (labelled `1') on the right, (14)

S�0� � heIIjF02j2Re
�
bE
2 �bH

2 ��
� � ÿPR

2 ÿ PT
2

for the region (labelled `2') on the left, (15)

where the energy flowing into the media with the refractive
indices nc and ns � � � R, T ) is

P r
1 � N r jFL1j2jb r

1 j2
2jRe a1j

cos yr
1 ; (16)

P r
2 � N r jF02j2jb r

2 j2
2jRe a2j

cos yr
2 ; (17)

sin yr
1 � ÿ

Im a1
knr

;sin yr
2 � ÿ

Im a2
knr

; (18)

N R � 1 ;

(19)
N T � ns=nc ; TE ,

nc=ns ; TM .

�
Substitution of expressions (16) and (17) into relationships
(14) and (15) gives

heI �
jbR

1 j2cos yR
1 �N T jbT

1 j2cos yT
1

2jRe a1jRe
�
bE
1 �bH

1 ��
� , (20)

heII �
jbR

2 j2cos yR
2 �N T jbT

2 j2cos yT
2

ÿ2jRe a2jRe
�
bE
2 �bH

2 ��
� . (21)

For normal incidence of a light beam the effective thick-
nesses of modes I and II are identical, because of symmetry.

The formalism described above is valid for any double res-
onance (normal incidence of a light beam and a resonance
between the modes propagating in the opposite directions
are not essential). In discussing a finite grating below,we shall
consider only the case of normal incidence of light. We then
have Re a1 Re a2 < 0.We shall consider the specific case when
Re a1 > 0.

Each eigenmode consists of coupled waves propagating in
opposite directions. Therefore, at the boundary of a wave-
guide grating one eigenmode should be converted by
reflection into the other mode. The sum of the fields of the
incident and reflected waves should be equal to the total field
corresponding to the wave escaping from the waveguide gra-
ting (boundary conditions). Consequently, the total fields E
andH should be in phase at the right boundary of the grating
and in antiphase at the left boundary.

The general solution for an infinite grating can be written
in the form of a sum of the particular solution (6) and of the
two mode eigensolutions described in a form similar to
expression (11). If these conditions apply at the boundaries
of the illuminated area 0 < z < L, it is obvious that the
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solution in this area of an infinite grating should be identical
with the solution for a finite waveguide grating illuminated
with an identical light beam. Therefore, the solution of the
problem formulated above is

f r
tot�z� � f r�z� � C1b

r
1 exp�ÿa1z� � C2b

r
2

�ÿ a2�zÿ L�� (22)

subject to the boundary conditions

f H
tot�L�
f E
tot�L�

� HL

EL
� nL ;

z� L ,

(23)
f H
tot�0�
f E
tot�0�

� H0

E0
� ÿn0 ;z� 0 ,

where EL,HL, nL and E0,H0, n0 are the electric and magnetic
fields of the waves escaping from the area of the waveguide
without the grating (L < z and z < 0), and their effective
refractive indices. We shall assume that the transverse field
distributions are the same for a waveguide with and without
a grating.

If we use expressions (22), (7), and (9), we find that the
boundary conditions (23) can be rewritten as follows:

bH
1 EL1 � C1b

H
1 exp�ÿa1L� � C2b

H
2

bE
1 FL1 � C1bE

1 exp�ÿa1L� � C2bE
2
� nL ;

z� L ,

(24)
bH
2 F02 � C1b

H
1 � C2b

H
2 exp�a2L�

bE
2 F02 � C1bE

1 � C2bE
2 exp�a2L�

� ÿn0 ;z� 0 .

The coefficients satisfying the above system are

C1 �
�bH

2 � n0b
E
2 �
��bH

1 ÿ nLb
E
1 �FL1exp�a2L� ÿ �bH

2 ÿnLbE
2 �F02

�
�bH

1 �n0bE
1 ��bH

2 ÿnLbE
2 �ÿ�bH

1 ÿnLbE
1 ��bH

2 �n0bE
2 �exp

��a2ÿa1�L� ,
(25)

C2 �
�bH

1 ÿ nLb
E
1 �
��bH

2 � n0b
E
2 �F02exp�ÿa1L� ÿ �bH

1 � n0b
E
1 �FL1

�
�bH

1 � n0bE
1 ��bH

2 ÿnLbE
2 �ÿ�bH

1 ÿnLbE
1 ��bH

2 �n0bE
2 �exp

��a2ÿa1�L� .
The normalised energy fluxes in the waveguide without a
grating to the right (SL) and left (S0) of its boundaries [see
expression (13)]

SL � S�L� � helRe
�
f E
tot�L�

�
f H
tot�L�

��	 ,
(26)

ÿS0 � S�0� � hellRe
�
f E
tot�0�

�
f H
tot�0�

��	
represent essentially the efficiencies of excitation of the
investigated waveguides.

The effects of reflection and transmission of those parts of
the light beamwhich are incident on the waveguide area with-
out the grating can be found by applying the formulas
described above and approximating the functions R0��� and
T0��� for the reflection and transmission of a plane wave in
these areas of the waveguide as follows [see formula (1)]:

R0�Db� � d0 � d1�iDb� � d2�iDb�2 � . . . , (27)

where d �
0 , d

�
1 , d

�
2 are the complex coefficients ( � � R; T ).

The amplitudes of the reflected and transmitted waves in the
regions z < 0 and L < z can be found by analogy with
expression (6):

f r
tot�z� � d r

0 q�z� � d r
1 q
0�z� � d r

2 q
00�z� � . . . . (28)

The total reflection (R ) and transmission (T ) coefficients of
a light beam incident on a waveguide with a corrugated finite
area then become

R �
�1
ÿ1
j f R

tot�z�j2cos yR�z�z , (29)

T �
�1
ÿ1
j f T

tot�z�j2N Tcos yT �z�z , (30)

where the function f �tot�z� is given by formulas (22) and (28),
depending on its argument, N T is given by formula (19).
Therefore, the energy of fluxes of the reflected and trans-
mitted waves, and also of the modes propagating in the
grating-free areas of the waveguide are given by formu-
las (29), (30), and (26) for a light beam of any kind
incident on a waveguide structure with a finite grating.

3. Numerical calculation
The theory presented above was used to write a program for
a personal computer, which can be used to calculate the
parameters representing the process of reflection of a cylin-
drical Gaussian light beam from the surface of a waveguide
with a corrugated area of finite dimensions. In these calcu-
lations we considered the waveguide structure shown in
Fig. 1 and consisting of a guiding tantalum oxide film
(ng � 2:02, h � 0:17 mm) deposited on a glass substrate
(ns � 1:51). Above the guiding film there was a `covering'
medium with a refractive index nc � 1:43. The boundary
between this medium and the film was corrugated with a
period � � 0:33 mm (the corrugations were assumed to be
rectangular and of depth 2� � 10, 20, 30, and 60 nm).

Fig. 2 gives the spectral dependences of the efficiency of
excitation of the guided modes, and of the reflection and
transmission coefficients calculated for a Gaussian light
beam incident normally on waveguide gratings with different
periods 2�. The length of the grating and the beam param-
eters were fixed and they were found by optimising the
maximum efficiency of the mode excitation in a waveguide
without a grating and for a structure with the corrugation
depth 2� � 20 nm. We found that the beam axis should
pass through the centre of the grating and the beam diameter
2w � 193 mm should be practically identical with the grating
length L � 198 mm and match the reciprocal of the coupling
coefficient of use in a corrugated waveguide [4]. A shift of
the reflection (transmission) band on the wavelength scale
observed for these dependences is the result of a change in
the effective thickness of the guiding film. The reflection
of light becomes stronger for a deeper grating, whereas a
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Figure 2. Spectral dependences of the transmission (1 ) and reflec-
tion (2 ) coefficients, and of the efficiency of excitation of guided
modes (3 ), calculated for a Gaussian light beam incident along the nor-
mal on a waveguide grating with three different grating depths.
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reduction in the grating depth increases the transmission of
light by the waveguide mirror, but the efficiency of excitation
of the guided modes falls in both cases.

Table 1 lists the maximum reflection coefficients calcu-
lated for fixed beam parameters and the corresponding
wavelengths, considered as a function of the corrugation
depth. Fig. 3 shows the dependences of the reflection and
transmission coefficients, and of the fraction of the incident
light transformed into the guided modes, on the length of the
grating mirror.These dependences reveal that there is an opti-
mal (from the point of view of efficiency of excitation of the
guided modes) grating length [4]. The attainable values of R
and Tare approximately the same (�30%). An increase in the
grating size may raise the reflection coefficient to 95%. Such a
reflection coefficient can be obtained for shorter gratings
with a greater corrugation depth (Table 1).

The case of an asymmetric position of a light beam
relative to the grating centre is very interesting from the point
of view of practical use. As mentioned earlier, we can then
expect an increase in the intensity of one of the excited modes
relative to the other. Fig. 4 gives the dependences of R,T, and
of the mode excitation efficiency on the grating length. We
can see that an increase in the grating length can increase
the efficiency (27%) of excitation of one of the modes. The
reflection coefficient of the incident beam also increases,
but not by very much: from �25% for the optimal grating
length (L � 198 mm) to �40% for L � 1. As the beam
centre moves away from the edge of a grating, the reflection
coefficient increases to �67% for L � 1.

Restriction of the size of the grating on a waveguide
should undoubtedly influence the form of the reflected and
transmitted light beams. Our theory makes it possible to esti-
mate the changes in these beams. Fig. 5 shows the
distributions of the moduli of the amplitude of these beams
on the assumption that the beam profile is Gaussian and
that it is incident along the normal to a waveguide grating
L � 0:5 mm long. It follows from Fig. 5 that a beam trans-
mitted right through a grating mirror undergoes major
changes. Within the grating boundaries, the distribution of
the beam amplitude now has dips and their positions coincide
with the maxima of a light flux propagating in a grating wave-
guide. Zero value of the flux coincides with the maximum of
the reflected beam amplitude. The optical energy travels
along the mirror in two opposite directions: to the right
and left of the point corresponding to zero value of the
flux S.

4. Experiments
An investigation of the important (in practice) characteris-
tics of the reflection of light at near-normal angles of incidence
requires light sources capable of fine tuning or corrugated
waveguides with continuously varying parameters. This

Table 1. Calculated maximal reflection coefficients and the maxima of
the wavelengths of light in the excitation of a waveguide with a corruga-
tion depth 2�.

Corrugation depth

2s
�

nm
Reflection coefficient

R (%)
Wavelength �

�
nm

10 6.43 590.520

20 25.45 587.419

30 60.88 584.582

60 92.83 574.189
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Figure 3. Dependences of the reflection (R ) and transmission (T ) coeffi-
cients, and also of the efficiency (S0 � SL) of excitation of guided modes
on the length of a grating of constant depth 2� � 20 nm. The diameter of
the incident light beam is equal to the grating length, the axis of this beam
passes through the middle of the grating, and the wavelength
� � 587:558 nm of the radiation corresponds to the reflection maximum
of a plane wave by an infinite grating.
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Figure 4. Dependences of the reflection (R ) and transmission (T ) coeffi-
cients, and also of the efficiencies of excitation (S0; SL) of guided modes
on the grating length (the radius of the beam and the position of its centre
relative to the front edge of the grating are fixed and have optimal values;
the wavelength � � 587:705 nm of the radiation corre-sponds to the
maximum efficiency of excitation of the guided modes).
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Figure 5. Distributions of the moduli of the amplitudes of the inci-
dent (1 ), reflected (2 ), and transmitted (3 ) light beams, and of
the normalised transverse energy flux in a corrugated waveguide (4 ).
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requirement arises because of the small spectral width of the
observed resonant process. The conditions for a resonance
can be satisfied by lasing in which a waveguide grating is
used as one of the mirrors of a plane ^ plane cavity of a dye
laser. A change in the dimensions of the grating mirror (gra-
ting length) alters its reflection coefficient and, consequently,
the threshold pump energy. Therefore, the measured pump
energy can be used to estimate the reflection coefficient. The
intensity of a guided mode near the grating edge also carries
information on the efficiency of coupling of light by the
grating, considered as a function of the diameter and the
axis position of the incident light beam. The width of the
spectrum of the radiation generated in this way is a measure
of the resonant-reflection width. Therefore, the laser method
can give directly the efficiency of utilisation of a waveguide
grating mirror in a plane ^ plane cavity.

In our experiments (Fig. 6) we used a Ta2O5 guiding film
(ng � 2:02, h � 0:17 mm) deposited on a glass substrate
(ns � 1:51). The upper boundary of the film was corrugated
with a period � � 0:33 mm. The active medium was an
ethylene glycol solution of rhodamine 6G (R6G). The con-
centration of this solution was �10 mol.%, its refractive
index was nc � 1:43, and it was placed between the waveguide
and an aluminium mirror. This mirror and the corrugated
waveguide together formed a plane ^ plane cavity. The thick-
ness of the liquid active layer was 100 mm and the dye was
pumped by the second harmonic (�p � 0:53 mm) of an
Nd3� :YAG laser. The pump radiation was incident along
the normal to the plane of the structure across the corrugated
waveguide substrate. The minimum pump beam diameter in
our experiments was 100 mm. The diameter of the light beam
with the TE polarisation and the � � 590 nm wavelength
(and a half-width less than 0.1 nm) generated in the dye
was also �100 mm.

The lasing wavelength (�las � �n�) coincided precisely
with the maximum of the anomalous reflection of light by
the waveguide grating. The previously measured effective
refractive index was n� � 1:788 and the grating period was
� � 0:33 mm.

Initially we used a waveguide grating which was infinite,
compared with the dimensions of the reflected beam, and we
observed lasing for the minimum possible pump beam diam-
eter (100 mm). Since the calculated reflection coefficient of the
waveguide grating reached �67%, the generated dye laser
radiation was readily detected from the output grating mirror

of the laser structure.We then used a semi-infinite waveguide
grating and investigated the generated radiation at the output
mirror of the laser and inside the waveguide adjoining the
grating. The pump beam diameter was kept constant. The
light intensity in the waveguide was governed by the position
of the centre of the pumped spot relative to the grating edge:
as the spot moved away from the edge to a distance of
�400 mm, the intensity of the mode inside the waveguide
fell practically to zero (Fig. 7).

5. Conclusions
The results of our investigation were: the development of a
method for calculating the parameters of a reflection of a
light beam from the surface of a corrugated waveguide car-
rying a grating of finite length, the confirmation of the
feasibility of reaching high reflection coefficients (up to
�95%) of the surface of a corrugated waveguide with a
short grating (�200 mm) that should make it possible to
use such gratings in semiconductor lasers, andö finallyö
the construction of a dye laser with a grating mirror on a
waveguide characterised by a small half-width (0.1 nm) of
the emission line and by an emission wavelength governed by
the grating period.
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