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Abstract: We present a simple theory explaining the extraordinary features 
of high-contrast optical gratings in the near-wavelength regime, particularly 
the very broadband high reflectivity (>99%) and the ultra-high quality 
factor resonances (Q>107). We present, for the first time, an intuitive 
explanation for both features using a simple phase selection rule, and reveal 
the anti-crossing and crossing effects between the grating modes. Our 
analytical results agree well with simulations and the experimental data 
obtained from vertical cavity surface emitting lasers incorporating a high 
contrast grating as top reflector. 
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1. Introduction 

Optical gratings are among the most fundamental building blocks in optics. They are well 
understood in two regimes: the diffraction regime, where the grating period (Λ) is greater 
than the wavelength (λ) [1] and the deep-subwavelength regime, where the grating period is 
much less than the wavelength [2]. However, between these two well-known regimes lies a 
third, relatively unexplored regime: the near-wavelength regime, here-in defined as a grating 
whose period is between the wavelengths inside the grating material and its surrounding 
media. For example, if a near-wavelength grating is made of material with index nr and 
surrounded by na, its period would be between λ/nr and λ/na. In this regime, gratings behave 
radically differently, and exhibit features that are not commonly attributed to gratings. With 
the advent of nanofabrication technologies, near-wavelength gratings have been explored for 
high reflectivity diffractive elements (85%–90%) [3,4], optical isolator [5], resonant grating 
waveguides as optical modulators or switches [6], and optical filters [7]. In all these cases, the 
gratings were typically etched into the substrate with a large index contrast with the medium 
on top, from which light incident. However, recently, we discovered a novel near-wavelength 
grating structure where the high index grating is completely surrounded by low index 
materials, referred as high-contrast gratings (HCG) [8]. By fully surrounding the high index 
medium with low index, many unexpected, extraordinary features that are uncommon to 
diffractive gratings were obtained. One of these features is broadband high reflectivity 
(>99%). Another feature is high quality-factor resonance (Q>107). 

We reported an ultrabroadband, high reflectivity HCG with Δλ/λ>30% at >99% reflection 
[8]. The broadband mirror was experimentally verified [9] and implemented in vertical cavity 
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surface emitting lasers (VCSELs) in place of conventional distributed Bragg reflectors 
(DBRs) [10–13]. The surface-normal high-Q resonance effect in a single-layer HCG was also 
proposed and verified [14]. Recently, Brückner et al. reported high reflectivity HCG mirror 
fabricated using an interesting T-shape grating to achieve index contrast with a single 
material [15]. Stöferle et al. realized a laser cavity using vertically standing HCGs, with 
emission in the direction parallel to the wafer surface [16]. In addition, Sciancalepore et al. 
Optically pumped VCSEL with top and bottom HCGs is achieved [17]. Additional promising 
applications of near-wavelength HCGs include hollow-core low-loss waveguides, whereby 
the light is guided between two grating mirrors [18], multi-wavelength VCSEL arrays [19], 
planar focusing reflectors [20,21], biosensors [14], ultra-compact optical couplers and 
splitters [22], etc. 

To understand near-wavelength gratings, the electromagnetic field profile inside the 
grating can neither be approximated (as in the deep-subwavelength regime) nor ignored (as in 
the diffraction regime). Fully rigorous electromagnetic solutions exist for gratings [23–25], 
but they tend to involve heavy mathematical formulism. A quasi-analytical method using 
coupled Bloch modes was published with greatly simplified mathematics [26]. However, due 
to the inclusion of more general terms, they do not easily lead to simple physical intuition to 
explain the phenomena reported in Refs. [8–22]. Recently, we published a simple analytic 
formalism to explain the broadband reflection and resonance [27,28]. We showed that the 
resonances are due to coherent interference between two surface-normal waveguide array 
modes resulting from abrupt and large index contrast [28], whereas the broadband reflection 
is due to their destructive interference. 

In this work, we present a very simple algorithm to tie the two seemingly opposite 
properties together. We discovered a simple phase selection rule, which for the first time 
completely trivializes HCG’s extraordinary properties and leads to an intuitive design 
algorithm. Considering the wide range of optical applications, it is not difficult to appreciate 
the potential enormous scientific as well as technological impact of near-wavelength HCGs. 

2. Theoretical frame work 
Figure 1(a) describes the basic structure under consideration, consisting of dielectric 

gratings with a refractive index nbar (2<nbar<3.5), completely surrounded by a low index 
medium, e.g. air. The grating period, bar width, air gap and thickness are denoted by Λ, s, a, 
and tg, respectively. As discussed in [27], the grating is assumed to be infinite in the y 
direction and infinitely periodic in the x direction. The incident light is assumed to be a plane 
wave propagating along the z direction. The grating bars can be considered as merely a 
periodic array of waveguides along z direction. Upon plane wave incidence, a few slab-
waveguide-array modes are excited. These modes then depart from the grating input plane (z 
= 0) and propagate downward (+z direction) to the grating output plane (z = tg), and then 
reflect back up. As mentioned, the extraordinary phenomena of near-wavelength gratings can 
be explained from the viewpoint of interference between these modes [27,28]. 

The two main types of phenomena observed in the subwavelength regime are shown in 
Fig. 1(b). The surface-normal reflectivity spectrum of resonant gratings (in red) exhibits 
several high-Q resonances, characterized by very sharp transitions from 0 to ~100% 
reflectivity, or vice versa. The reflectivity spectrum of broadband grating reflectors (in blue), 
exhibits reflectivity above 99% across a large bandwidth. The dispersion relation of the 
waveguide array modes for surface-normal incidence is given in [27] and repeated here for 
simple reference: 

 ( ) ( )2
bartan / 2 tan / 2s s a ak k s n k k a= −  (1a) 

 ( ) ( )2 22 2 2
bar2 / 2 /a sk n kβ π λ π λ= − = −  (1b) 
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Fig. 1. (a) Basic HCG structure. The grating comprises of simple dielectric bars with high 
refractive index surrounded by a low index medium. The plane wave is incident from the top 
in the surface normal direction. The incident plane wave excites waveguide array modes, 
which propagate downward from z = 0 to z = tg. (b) Examples of two types of extraordinary 
reflectivity features: broad-band high reflectivity (blue) and high-Q resonances (red). The 
broadband reflector HCG dimensions are: Λ = 772nm, tg = 502nm, η = 77%, nr = 3.2137 and 
TM polarized light. The high-Q resonator HCG is TE polarized with Λ = 716nm, tg = 1494nm, 
η = 70%, nr = 3.48. The spectra were calculated using RCWA. (c) Dispersion curves of the 
waveguide array modes (blue lines) calculated using analytic solutions: β being the z-
wavenumbers. Between the two light lines (red, dashed) the dispersion resembles that of a slab 
waveguide [29]. However, below the air light line (β<ω/c) there is a discrete set of modes due 
to subwavelength grating periodicity. ωc2 and ωc3 are the cutoffs of the second and the third 
modes respectively, and between them the grating operates at a dual-mode regime. 

where β is the z-wavenumber (propagation constant) of the waveguide-array mode; and ks and 
ka are the x-wavenumbers inside the grating bars and inside air-gaps, respectively. The 
dispersion relation in Eq. (1) corresponds to E-field is along the x axis, referred as TM 
polarization of incidence. The dispersion relation for TE polarization of incidence (for which 
the E-field is along the y axis) is obtained by omitting the nbar

2 factor in Eq. (1)(a) [27]. One 
may note the similarity of Eq. (1) with the characteristic equation of an ordinary slab 
waveguide [29]. To see Eq. (1) approaches to the characteristic equation of a slab waveguide, 
we can simply push period Λ and, hence, a to infinity. Equation (1)a cannot converge unless 
ka is imaginary and, in which case, tan(ka a/2) → i. Eq. 1a becomes exactly characteristic 
equation of a slab waveguide. 

The ω-β relations (ω = 2πc/λ) resulting from Eq. (1) are plotted in Fig. 1(c). First, we 
denote the light lines for air, β = ω/c, and the dielectric β = ωnbar/c. The dispersion curves 
between the two light lines indeed resemble those of an ordinary slab waveguide [29]. Here, 
we see several trends which are the same to a slab waveguide: (1) as frequency increases, 
more and more modes exist; (2) except for the fundamental mode, there is a cut-off frequency 
(denoted by ωc2, ωc3, etc.) for each higher order mode (cutoff condition being β = 0); and (3) 
the higher the order of the mode, the higher the cut-off frequency (the shorter the cut-off 
wavelength). 

One main difference from ordinary slab waveguides stands-out: HCG has a discrete set of 
modes below the air light line, i.e. β<ω/c, in contrast to the continuum of radiation modes 
observed for a slab waveguide. This discretization is a direct consequence of the grating 
periodicity. The cutoff frequencies in Fig. 1(c) are important, since they determine the regime 
in which the grating operates. As will be shown subsequently, the extraordinary features 
discussed in the introduction are observed primarily in the regime where exactly two modes 
exist, hereinafter the “dual-mode” regime. 

3. Phase selection rules of HCG 

Figure 2(a) shows a simulated reflectivity contour map versus normalized wavelength and 
grating thickness (both by Λ) for a surface-normal incident TE-plane wave onto a HCG with 
nbar = 3.48 and a duty cycle of η = s/Λ = 0.7 using rigorous coupled wave analysis (RCWA) 
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[23]. A fascinatingly well-behaved, highly ordered, checker-board pattern reveals a strong 
dependence on both wavelength and HCG thickness, which indicates an interference effect. 
This checker-board pattern is particularly pronounced in the dual-mode regime for 
wavelengths between λc2 and λc3 (cut-off wavelengths of the second and third waveguide array 
modes, respectively). We further note that half of the “checker boxes” have high reflectivity 
(dark red contour), while the other half have lower reflectivity. 

 

Fig. 2. (a) Reflectivity contour of a HCG as a function of wavelength and grating thickness 
simulated by RCWA. The incident wave has a TE polarized, surface-normal incidence, 
whereas the grating has a duty cycle of 0.7 and a refractive index of 3.48. The mode cutoffs 
(λc2, λc3, etc.) are marked to clearly illustrate the differences of the three wavelength-regimes: 
deep-subwavelength, near-wavelength and diffraction. (b) Analytical solutions of Fabry-Perot 
(FP) resonance conditions of the individual modes (Eq. (3), shown by the blue curves, 
superimposed on the reflectivity contour in 2(a). Excellent agreement is obtained between the 
analytic and simulation results. Green curves correspond to the in-phase selection-rule, 
whereas yellow curves correspond to the π-phase selection-rule, Eq. (4). The insets show 
examples of an anti-crossing and a crossing between the FP resonance lines (blue curves). 

For wavelengths longer than λc2, only one grating mode exists and the grating operates in 
the deep-subwavelength regime, behaving like a quasi-uniform layer. The reflectivity contour 
is governed by a simple Fabry-Perot (FP) mechanism, which is recognizable by the (quasi) 
linear bands in Fig. 2(a). For wavelengths shorter than λc3, on the other hand, more and more 
modes emerge, and the reflectivity contour shapes become less and less ordered. Below the 
subwavelength limit (λ<Λ), the grating enters the diffraction regime, where higher diffraction 
orders emerge outside the grating and reflectivity is greatly reduced. 

The intricate “checker-board” contour-shapes of the dual-mode regime in Fig. 2(a) 
suggest a strong underlying order. To understand it, we must characterize the propagation and 
evolution of the waveguide-array modes by including the effects of the exiting planes. This 
involves two additional matrices we should consider. The first matrix is a diagonal 
propagation matrix φ [27], describing the phases accumulated by the modes as they propagate 
within the gratin from z = 0 to z = tg, or vice versa. This is a simple diagonal matrix, given 
by: φnn = exp(-jβntg), where βn is the z-wavenumber of nth mode. 

The second and most important matrix is the reflection matrix ρ. When the modes reach 
the output plane (z = tg), and subsequently return to the input plane (z = 0), due to the abrupt 
change in refractive index profiles, they couple into each other in addition to reflecting back 
to themselves. This means the off-diagonal coefficients ρnm (n≠m) are nonzero. A full detailed 
derivation of ρ is available in Ref. [27]. This is a unique property of HCG, where the 
orthogonal (waveguide array) modes are coupled at the input and output planes due to an 
abrupt and large index profile change. 
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In the dual-mode regime, the sizes of φ and ρ are only 2x2. Let us denote by 2ψn as the 
phases accumulated by the waveguide-array modes during one round-trip through the grating. 
These phases are given by 

 ( )phase eigenvalue # ofn nψ
∆

= ρφ    (2) 

The Fabry-Perot resonance conditions for phases defined in Eq. (2) are simply 

 , where 1,2,...n m mψ π= =   (3) 

Next, the analytical solutions of Eq. (3) are plotted on top of the simulated reflectivity 
contour plots for comparison, shown as the blue solid lines in Fig. 2(b). The blue solid lines 
appear to follow two families of curves. The first set are nearly linear, corresponding to the 
first mode: ψ1 = mπ, whereas the second set are nearly parabolic, corresponding to the second 
mode: ψ2 = mπ. If we follow one blue curve, we can pass continuously form a mode of the 
first kind (linear curve) to a mode of the second kind (parabolic curve), or vice versa. 
Coupling of the two waveguide array modes are clearly observed. An excellent agreement is 
obtained between the analytical FP resonance lines and the simulated reflectivity contour 
testifying to the fact that the physics of HCG features resides in Eq. (3). 

The intersection points of the blue grid lines correspond to 

 2 1 , where 0,1,2,l lψ ψ ψ π∆ = − = = …     (4) 

The intersection of the two grid lines indicates that both modes reach their Fabry-Perot 
conditions simultaneously. When the two FP lines have an odd number multiple of π-phase 
difference (odd l), the blue grid-lines simply cross each other, herein referred to as “crossing”. 
On the other hand, when the intersecting FP lines are in-phase, (even l), the two FP lines repel 
against each other, forming an “anti-crossing”. The detailed views of these intersections are 
shown at the two right insets of Fig. 2(b). Notably, near the anti-crossing point, the 
reflectivity changes drastically with wavelength and thickness. The crossing can be 
understood as follows. When the two modes arrive to the output plane (z = tg) with a π-phase 
difference (odd l), they interfere destructively, thus cancelling out the transmission, and 
causing the power to be reflected. The “cancelation” of transmission refers to cancellation of 
the coupling to the 0th order diffraction. Since HCG has subwavelength period in the exiting 
medium, only the 0th order diffraction carries energy. When there is no transmission into the 
0th order diffraction, full reflection is obtained. More of this mechanism can be found in [27]. 
An anti-crossing happens when the two modes arrive in-phase (even l) and interfere 
constructively, resulting in a resonance built-up inside the grating. The resonance manifests 
itself as a sharp change in reflection over a small span of wavelength [28]. 

Next, we plot family curves of single-trip phase differences between the two modes. We 
note that all high reflectivity “checker boxes” are connected by odd l curves (depicted by 
green curves), whereas the low reflectivity boxes are connected by even ones (depicted by 
yellow curves). By adjusting HCG duty cycle, refractive indices and incident beam 
polarization, the curves can be shifted and optimized. These set of lines help to guide the 
optimization process. 

4. Crossings and anti-crossing 

Figures 3(a) and 3(b) present the intensity profiles in the grating for the cases of an anti-
crossing and a crossing, respectively, using the analytical formulation presented here. Anti-
crossing corresponds to a very strong resonance, where a very significant (107-fold) intensity 
buildup occurs within the grating. On the other hand, crossing is shown to correspond to a 
fairly weak (25x) energy buildup. The phenomena of band anti-crossings are commonly 
observed in physics and, more specifically, optics. Examples include coupled quantum-dot 
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cavities [30,31], semiconductor alloys [32], photonic crystals [33], optical modulators [34], 
and many others. In all cases, anti-crossings are known to be indicators of strong coupling, 
while crossings typically indicate weak or no coupling. 

Within optics and electromagnetism, crossings and anti-crossings are typically presented 
in ω-β diagrams, rather than in a tg-λ diagram, which we chose because the effect can be more 
clearly seen. However, the two representations are indeed very similar, since as we mentioned 
above, ψn = mπ are merely generalizations of the simpler condition tg = mπβn

−1, and therefore 
the blue grid-lines in Fig. 2(b) is equivalent to a β−1-ω−1 diagram. Hence, all intuitions behind 
crossings and anti-crossings in standard texts apply. 

The resonance in Fig. 3(a) is a first order resonance, which is defined as the number of 
intensity peaks along the z-axis at the center of the air gap (in this case x/Λ = 0.15). This is 
not incidental: All anti-crossings that are located along the right-most parabolic grid-line 
(corresponding to ψ2 = π) yield first order resonances. Similarly, all anti-crossings that are 
located along the second rightmost parabolic grid-line (ψ2 = 2π) yield second order 
resonances, etc. In other words, the resonance order is determined by ψ2. 

 
Fig. 3. Intensity profiles inside the grating calculated using analytical formulation presented in 
this paper for (a) an anti-crossing (same anti-crossing as in the inset of Fig. 2(b)), showing 107-
fold resonant energy buildup, and (b) a crossing (same as in Fig. 2(b)), showing only weak 
energy buildup. The parameters are (a) λ/Λ = 2.3291, tg/Λ = 0.8415, η = 0.70, nr = 3.48 and 
(b) λ/Λ = 2.02, tg/Λ = 0.32, η = 0.70, nr = 3.48, all with TE-polarization. 

The high-Q resonance phenomenon in HCG can therefore be explained as merely a result 
of strongly coupled simultaneous FP resonances of two waveguide-array modes. The relation 
between strength of coupling and ψn is straightforward: When the intersecting grid lines are 
in-phase, the FP resonances have the same parity (both odd, or both even) and their intensity 
profiles overlap significantly, which leads to strong coupling between them and results in an 
anti-crossing. In contrast, an opposite parity between the two resonances leads to a weak 
coupling, resulting in a crossing. 

To verify that crossings and anti-crossings are inherent characteristics to an HCG 
structure, rather than merely a feature of our solution method, we plot in Fig. 4 the reflectivity 
contour tg-λ of the same grating with input at a large glancing angle (85°) incidence. The 
advantage of using a shallow angle is that the reflectivity is high everywhere except for 
resonance lines, thus making the crossings and the anti-crossings clearly visible directly from 
the reflectivity contour, without any need for us to overlay derivations from Eq. (3) on top of 
the figure. Of course, one should also note that due to the shallow incidence angle, the 
propagation constants βn are different from those of surface normal incidence. Hence Figs. 4 
and 2 show different FP lines, despite of the same physical dimensions. 
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Fig. 4. Reflectivity contour for the same HCG as in Fig. 2 but with a shallow angle (θ = 85°) 
incidence. The crossings and anti-crossings are clearly seen. 

5. Conclusion 

In conclusion, we introduce simple and intuitive relations between the phases of the grating 
modes, which explain completely the extraordinary features of HCG. We believe the 
analytical formulation and phase selection rules presented here can be very useful in design 
optimization of HCG reflector or resonator. Given a certain material combinations limited by 
device specifics, one can determine the dual-mode region, λc2< λ <λc3, using the analytic 
formula. One can then create the FP lines in a tg-λ plot (both normalized by the grating 
period) and locate the crossings and the anti-crossings, based on Eqs. (3) and (4). For a very 
broadband reflector, it is necessary to choose a duty cycle that yields a wide spectral spacing 
between the parabolic grid lines. On the other hand, for a high-Q resonator, it is necessary to 
choose a duty cycle which leads to a large anti-crossing gap (i.e. large resonant coupling) at 
the lowest first order resonance, since the lowest (i.e. smallest tg) first order resonance 
typically has the highest Q. We expect that the theoretical foundation laid in this work will 
help to harness the enormous potential of near-wavelength gratings. 
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