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We present a simple analytic formalism to explain the unique resonance phenomenon in subwavelength high-
contrast gratings (HCG). We show that the resonances are due to strong coupling between two surface-normal
waveguide array modes resulting from abrupt and large index contrast. Simple expression for HCG quality factor
is derived that agrees with spectral-fitting approaches reported in literature. © 2011 Optical Society of America
OCIS codes: 050.2770, 050.6624, 230.5750.

Optical gratings are well understood in the context of
interference of distributed reflections. A vast range of ap-
plications utilizes their properties to provide spectrally
resolved diffraction or coupling. Specifically, dielectric
gratings with subwavelength periods have excited much
attention [1–4] due to their high optical coupling effi-
ciency with the elimination of high diffraction orders. We
recently pointed out that rather extraordinary character-
istics can be achieved with a subwavelength grating that
is completely surrounded by low-index media, which is
hence named high-contrast grating (HCG) [5]. We discov-
ered that HCG could be designed to have an extremely
large bandwidth of high reflection [6]. We experimentally
incorporated HCG in vertical cavity surface emitting la-
sers (VCSELs), replacing conventional distributed Bragg
reflector (DBR) mirrors [7], and as a means to increase
tuning speed in a tunable VCSEL [8] and to provide
polarization control [5].
Most interestingly, HCG can be also designed to be-

have as an optical resonator with an ultrahigh quality
factor (Q) that facilitates surface-normal output coupling
[9]. The applications of HCG resonators (HCG-R) are
very broad. One possibility is to embed an active region
inside the grating bars, and create a surface emitting la-
ser based solely on a single grating—a structure far sim-
pler than a conventional VCSEL. Another possibility is to
use such resonant gratings as biosensors [9]. This rather
surprising and unexplored resonance phenomenon in
HCGs was also experimentally demonstrated [9]. How-
ever, in that case, a rather complex structure was used,
which included DBRs at the bottom and along the sides
of the HCG-R. In this Letter, we show that a high Q can be
obtained with a single HCG without DBRs. More impor-
tantly, we provide for the first time a simple, intuitive yet
rigorous and analytic explanation of HCG resonance phe-
nomenon. We show that the HCG resonance mechanism
can be understood in terms of a “matrix” Fabry–Perot
(FP) resonance and present a novel formulation for the
HCG Q factor based on a simple generalization of a stan-
dard FP resonance case. The numerous advantages of
HCGs over ordinary FP cavities are also discussed in
this Letter. Other rigorous electromagnetic treatments
of gratings and similar periodic structures exist in litera-
ture [10–12]. However, most of them tend to have a highly
complex mathematical nature. Our emphasis in this

Letter is therefore on combining rigor with simplicity
without compromise in either.

An HCG is schematically shown in Fig. 1(a). For sim-
plicity in analysis, the grating is assumed to be infinite in
the y direction and infinitely periodic in the x direction.
The grating has a thickness of tg, and z ¼ −tg and z ¼ 0
are referred to as the input and output planes, respec-
tively. The grating bars are made of a passive dielectric
material with refractive index nr . The grating bar width,
period, and duty cycle are s, Λ, and η ¼ s=Λ, respec-
tively. Because of the lateral periodicity (x direction),
the HCG supports multiple (waveguide array) modes pro-
pagating in the z direction whose analytical formula can
be found in [13,14]. In a typical HCG with a large index
contrast (nr ∼ 2:7–3:6), only the first two HCG modes
have real propagation constants and are propagating in
z direction over a relatively large spectral range, whereas
the higher-order modes have imaginary propagation con-
stants (along z), corresponding to decaying (surface)
waves. The propagation (or decay) of the modes along
the z axis is described by the propagation constants
βm, m being the mode number [14].

Fig. 1. (Color online) (a) High-contrast grating (HCG) resona-
tor schematic. Λ denotes grating period. (b) Surface-normal re-
flectivity spectrum of HCG resonator, where the resonance is
manifested by a very sharp transition between 0% and 100% re-
flectivity values. (c) Contour plot of the first four HCG grating
modes that sum up to the overall resonator supermode in (d).
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The HCG resonance phenomenon is analyzed as fol-
lows. An incident plane wave excites a superposition
of HCG modes with coefficients described by a vector
C ¼ ðC1; C2…ÞT , where Cm is the weight of mth mode at
the input plane (z ¼ −tg). While propagating downward
to the output plane (z ¼ 0), the weight vector becomes
φC, whereby φ is a diagonal propagation matrix [14], gi-
ven by φmm ¼ expð−jβmtgÞ. The modes are then reflected
from the output plane (z ¼ 0) back up into the grating
(i.e., along −z direction). Upon reflection, the weight vec-
tor becomes ρφC, where ρ is the reflection matrix, de-
scribing the reflection of each mode into itself as well
as coupling into others [14]. After one full round trip
(from z ¼ −tg to z ¼ 0 and back to z ¼ −tg) the weight
vector evolves into ρφρφC.
The HCG resonance occurs when the assembly of

modes, C, is self-sustainable. We will use the term
“supermode” below for such assembly of modes. This
can be compactly written as: C ¼ ρφρφC, meaning
that after one round trip, the assembly of modes
constructively interferes with itself, or equivalently:
ðI − ρφρφÞC ¼ 0, I being a unit matrix. Clearly, for a non-
zero solution to exist to such equation, the following con-
dition must be satisfied:

det½I − ðρφÞ2� ¼ 0: ð1Þ
Equation (1) is the HCG resonance condition. Further-

more, it is a multimode paraphrase on the theory of reg-
ular (single-mode) FP resonances. It is most interesting
to note that in HCG-R, it is the entire supermode that is
self-sustainable, while the individual modes may or
may not resonate. This is why matrix representation is
required and is particularly applicable.
The HCG resonance manifests itself as a sharp change

in its surface-normal reflectivity spectrum, as depicted by
Fig. 1(b), where reflectivity is changed from 0 to 100%
over a very small wavelength range (Δλ ∼ λ=Q ∼ 10 fm).
These transients typically ride on a background reflectiv-
ity with certain undulation. The simulation method used
here is rigorous coupled wave analysis (RCWA) [15]
with η ¼ 0:7, tg ¼ 2:086Λ, and nr ¼ 3:48 (typical of Si
at λ ∼ 1:55 μm). In this case, polarization of incidence
is parallel to the grating in y direction, known as TE
polarization.
Figure 1(c) shows the intensity contour plots of the

first four modes at resonant wavelength, λ ¼ 2:164Λ.
Figure 1(d) shows the overall field intensity inside
HCG-R, which corresponds to a supermode comprising
of all grating modes combined. The intensities in
Figs. 1(c) and 1(d) are calculated using the method de-
scribed in [14], and they are normalized by the E-field
intensity of the incident plane wave (jE0j2). The overall
intensity is shown to be more than two million times
stronger than the intensity of the incident plane-wave—
a consequence of high-Q resonant energy buildup. It
is important to note that the convergence of mode
strengths is very fast: the first two modes contain more
than 99.7% of the overall intensity. Figure 1(c) also de-
monstrates that the first two HCG modes have a standing
wave profile in z direction, while the third and the fourth
modes are surface waves, i.e., existing only close to the

HCG input and output surfaces. The HCG-R supermode
shown in Fig. 1(d) is a third-order resonance, since the
overall intensity exhibits three peaks along the z axis. In
fact, HCG resonances can exhibit all possible orders, de-
pending on the wavelength and the grating dimensions.

The remarkable differences between HCGs and ordin-
ary FP resonators follow. In the case of a regular FP cav-
ity with length t, the resonant condition is the scalar
version of Eq. (1): ½ρ expð−jβtÞ�2 ¼ 1, ρ being a reflection
coefficient from the FP wall and β being the propagation
wavenumber. This condition can be satisfied either with
gain medium, ImðβÞ > 0, jρj < 1, or with highly reflect-
ing walls, jρj ¼ 1. The multimode HCG allows a unique
mechanism to facilitate resonances, which do not fall
under either of these two categories. These additional
possibilities are a consequence of the matrix ρ being non-
diagonal [the only nondiagonal matrix in Eq. (1)]. The
nondiagonality of ρ means that the HCG modes couple
into each other upon reflections at z ¼ −tg and z ¼ 0.
This cross-coupling path does not exist in regular FP cav-
ities, and it is responsible for the strong energy build up
within HCG, and for its high Q.

In order to verify that Eq. (1) can predict HCG resonant
wavelengths, we plot in Fig. 2(a) a HCG reflectivity
spectrum containing five resonances, calculated using
RCWA. The five resonances have increasing orders, from
first on the right to fifth on the left. Figure 2(b) plots
j det½I − ðρφÞ2�j as a function of wavelength. It can be
seen that the minima of j det½I − ðρφÞ2�j indeed match
the wavelengths of all five resonances. In addition, the
narrowest of the five resonances corresponds to the
smallest j det½I − ðρφÞ2�j, in agreement with Eq. (1).

Equation (1) describes an idealized (“infinite” Q) reso-
nance. Next, we proceed to formulate a general expres-
sion for HCG resonances with finite quality factors,

Fig. 2. (Color online) Validation of the HCG resonance condi-
tion det½I − ðρφÞ2� ¼ 0 and of theQ-factor formulation in Eqs. (3)
and (4). (a) Surface-normal reflectivity spectra of an HCG-R
consisting of five resonances calculated using RCWA [15],
(b) determinant versus wavelength, (c) the HCG Q factor ob-
tained from Eqs. (3) and (4) compared with that from Fano fit-
ting. The overall Q factor of the HCG is maximal among Q1 and
Q2. The Q-factor spikes are shown to precisely predict the
wavelengths of the resonances in (a). (d) The dependence of
HCG-R Q factor on HCG thickness (blue), as dictated by
Eq. (4), compared with a uniform dielectric FP layer
(Eq. (2)). The uniform layer Q oscillates (not plotted) between
maximum and minimum values (both plotted) as a function of
thickness. This variation is very small compared with QHCG.
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whereby the individual supermodes reproduce them-
selves after each round trip, up to a multiplicative factor,
which is not unity. The strategy is simply finding the Q
factors of each supermode and arguing that the maxi-
mum among them is approximately the Q factor of the
entire structure. Let us start with a well-known expres-
sion for the Q factor of a regular FP resonator (ngr being
the effective group index of the FP cavity):

Q ¼ 2πngr
t
λ

�
�
�
�

ρ
1 − ρ2

�
�
�
�
: ð2Þ

Similarly, each HCG supermode has its own FP Q fac-
tor, Qj, the formulation of which is similar to Eq. (2):

Qj ¼ 2πngr
tg
λ

�
�
�
�

rj
1−r2j

�
�
�
�
; where rj ¼ eigenvaluesðρφÞ: ð3Þ

The supermodes are eigensolutions of HCG, and there-
fore rj in Eq. (3) is the jth eigenvalue of the matrix ρφ. In
the case of a continuous excitation by an incident plane
wave, energy will gradually start building up within each
supermode. The supermode with the highest Qj will build
up energy faster than the rest, and will eventually dom-
inate. Therefore, we can assign the overall HCG Q factor
as the maximal among the Qj in Eq. (3):

QHCG ¼ maxjðQjÞ ð4Þ
It is easy to prove that the resonance condition in

Eq. (1) is equivalent to QHCG → ∞ in Eq. (4), since both
conditions are only satisfied if one of the eigenvalues rj
equals either þ1 or −1. The Q factor formalism described
in Eqs. (3) and (4) can be verified against a known meth-
od for Q-factor extraction by spectral-curve fitting to
Fano resonance line shapes [16]. The agreement between
the two methods is excellent, as shown in Fig. 2(c),
which plots the two largest Qj∶Q1 and Q2. As expected,
QHCG ¼ maxðQ1; Q2Þ in Fig. 2(c) also exhibits peaks at
the exact resonance wavelengths. In addition, the highest
QHCG value indeed corresponds to the sharpest reso-
nance in Fig. 2(a). It is important to emphasize that our
Q-factor calculation does not rely on curve fitting.
Rather, we calculate the Q factor directly from the
HCG geometry using Eqs. (3) and (4). Notably, HCG de-
sign can be optimized to reach a Q value as high as 109

[Fig. 2(c)].
Figure 2(d) presents QHCG as a function of HCG thick-

ness. The Q-factor spikes are shown to be nearly periodic
with thickness. This periodic pattern attests to the FP
nature of HCG resonator and is distinctly different from
other structures, such as second-order gratings or photo-
nic crystals. We note that the maximum Q value is not
always repeated at larger thicknesses, since the phase
matching conditions are not precisely repeated in the
multimode case. Also in Fig. 2(d), as a baseline compar-
ison, we show the Q factor of a uniform dielectric layer
[Eq. (2)] having the same refractive index as the HCG. In
this case, the Q value is oscillating as a function of layer
thickness (not shown), while being bound between an
upper and a lower limit, both shown by the two dashed
black curves in Fig. 2(d). Indeed, the multimode nature of
HCG facilitates Q factors orders of magnitude higher
than those of a uniform dielectric layer with the same nr .

The important attributes of HCG that make high-Q re-
sonances possible are: (1) Subwavelength periodicity
(Λ < λ), which eliminates nonzero diffraction orders (in
the surface-normal configuration); (2) The high refrac-
tive index contrast between HCG and the outside planes
enhances the coupling between the modes upon reflec-
tion at z ¼ −tg and z ¼ 0; (3) The high refractive-index
contrast between the grating bars and air gaps typically
limits the number of propagating modes over a broad
wavelength range to two. Finally, we note that it is
particularly simple to design HCG-R for a wide range
of wavelengths since dimensions are scalable with
wavelength.

In conclusion, in this Letter we have presented a
simple explanation for the multimode FP mechanism
of resonant HCGs. Our theory facilitates a new simple
formalism for the Q factor of HCG. We present a design
with a Q value as high as 109. Advantages of HCG over
other FP resonators were also discussed.
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