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Modal method in deep metal-dielectric gratings:
the decisive role of hidden modes
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The modal method is well adapted for the modeling of deep-groove, high-contrast gratings of short period, pos-
sibly involving metal parts. Yet problems remain in the case of the TM polarization in the presence of metal
parts in the corrugations: whereas most of the diffraction features are explained by the interplay of an aston-
ishingly small number of true propagating and low-order evanescent modes, the exact solution of the diffrac-
tion problem requires the contribution of two types of evanescent modes that are usually overlooked. We in-
vestigate the nature and the role of these modes and show that metal gratings can be treated exactly by the

modal method. © 2006 Optical Society of America
OCIS codes: 050.1950, 050.1960.

1. INTRODUCTION

The modal method is often applied to one-dimensional
(1D) periodic corrugations in its rigorous-coupled-wave-
analysis form whereby the permittivity profile e(x,z) in
the grating region is expressed as a Fourier series.! The
electromagnetic field is also expressed in a Fourier series
which can be summed to represent the field of the modes
propagating up and down the grooves of the corrugation.
These modes are, however, the modes of the Fourier-
developed grating profile, not of the actual grating. In the
presence of high index contrast, and particularly when
metal parts are involved, such approach faces conver-
gence problems.?

The true modal method® considers the corrugation as it
actually is and calculates the field as that of the modes
satisfying the boundary conditions at the grating walls.
High permittivity contrasts are therefore taken into ac-
count naturally, which results in much faster conver-
gence. In a lamellar grating, the propagation constant of
the modes is given analytically as the solution of a very
simple dispersion equation resulting from the periodic
boundary conditions at the groove interfaces.

The presence of metal in the case of the TM polariza-
tion is known to cause numerical problems in most
methods.? The modal method also meets difficulties, al-
though the modes propagating up and down the rectan-
gular grooves of the grating do represent a natural basis
for the expansion of the grating fields.* The modal method
gives correct results if all the modes are taken into ac-
count. It is usually believed on the basis of early funda-
mental work that the modes of a lossless lamellar grating
have either real or imaginary eigenvalues.® Applying this
statement to a lamellar grating comprising lossless metal
parts actually leads to wrong results. Indeed, there are
some modes exhibiting a complex eigenvalue even in a
lossless structure.® When they are considered as parts of
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the modal basis, the modal method gives diffraction effi-
ciencies of a lossy grating with high accuracy and much
greater speed than the Fourier modal methods.

2. MODAL METHOD IN PERIODIC
STRUCTURES

A. One-Dimensional Binary Grating

Let us consider the diffraction of a plane monochromatic
wave on a lamellar grating made in a layer of thickness A
between two semi-infinite homogeneous media of permit-
tivity ¢ and e (see Fig. 1). The grating contains two
types of interleaved bars having thickness d{, do and per-
mittivity €4, €54, respectively, of period d=d;+d; in the x
direction. The magnetic permeability of all media is as-
sumed to be that of vacuum ugy. The structure is uniform
in the y direction. If the incidence is under angle 0 rela-
tive to the z axis, the field components of the incident
wave are

(Ei(x,z,t)) (E%f)
= exp(ik,x)exp(- ik%,z)exp(— iwt),

Hi(xyz’t) I-I(I]+
(1)
where
k,=konysin 6, k}) = kony cos 0, (2)
e =n;’€, ko= w\€uo- (3)

The rationale of the modal method is to first represent
the field inside the grating in the form of modes of an in-
finite periodical structure and then to match the grating
modes at interfaces z==+h/2 with diffraction order fields
under and above the grating. Thus, the field solution in
the grating region is expressed as the infinite sum
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Fig. 1.

Fig. 2. Modal field representation in an infinite grating.

Eyx2)\ (Bl
(Hz(x,z))=g( H,(x )>[a exp(iB,z) + a, exp(-if,z2)],

h h
——<z<-, (4)
2 2

where, for the mode of order g, 8, is the propagation con-

stant, a are up and down wave amplitudes, and ( q((x))) is
the quas1 -periodical part of the modal field distribution.
The following subsections will be devoted to determining
the propagation constants 3, and modal fields. The un-
known amplitudes a® can be found by using boundary

q
conditions at interfaces z=+h/2.

B. Modes of an Infinite Grating

The grating is first considered as infinite in the z direc-
tion. Let a grating mode propagate with constant 3, up in
the z direction. In both media of which the grating is com-
pared the mode is represented by two waves (Fig. 2). At
vertical interfaces these waves are partially reflected and
transmitted. Since such reflection/transmission does not
change the polarization, each mode of the grating is either
TE or TM polarized.

1. TE Grating Modes

The electric field of a TE mode has only a transverse com-
ponent directed along the y axis. Besides its periodicity, it
contains the factor proportional to exp(ik,x) imposed by
the incident wave. Therefore, over the mth period of the
grating the modal field can be found in the form
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E,(x,y,2,t) =n, exp(ik,md)exp(iB,z)exp(- iwt)
by* explikyx) + b, (- ikx),

md<x<md+d,

5
b?* exp(ikqx) + bg" exp(—ikox), )

md+d;<x<(m+1)d

where

ki=\ky'n;,” - B,% j=1,2, (6)

m is an arbitrary integer number, 3, is the propagation
constant, and amplitudes b]+ j=1,2, are to be deter-
mined.

The continuity of the electric field and of its x deriva-
tive at interfaces x=md and x=md +d; gives the relation-
ships between amplitudes b{;—', Jj=1,2, as well as the dis-
persion equation on the propagation constant g,:

1(ky ky
2\ ky  ky

cos kid; cos kzdz—— —+ —)smkldl sin kody = cos k,d.

(7)

2. TM Grating Modes
The magnetic field of a TM mode over the mth period of

the grating is found as

H,(x,y,2,t) =n, exp(ik,md)exp(iB,z)exp(- iwt)
b;+ exp(ikix) + b;"(— ikix),

md<x<=md+d;

8
b§+ exp(ikyx) + bg' exp(—ikyx), ®)

md+d;<x<(m+1)d

The continuity of the magnetic field H, and of ratio (1/¢)
X (0H,/ dx) at interfaces x=md and x = md +d; gives the re-
latlonshlps between coefficients &’ +, Jj=1,2, as well as the
dispersion equation on the propagatlon constant:

1 Uz 2k1 ng 2k2
cos kid cos kods — §<g— + g—2

3 )Sin kldl sin k2d2
nNig ks Ngg R

=cosk,d. (9)

More detailed derivation of Eqgs. (7) and (9) can be found
in Refs. 3 and 5-8.

3. DISPERSION EQUATION ANALYSIS

In Sections 3 and 4, the case of a purely real dielectric
permittivity is considered. This simplifies substantially
the modal analysis without any loss of physical meaning.
The case of lossy metals will be analyzed in Section 5.
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Both dispersion equations contain the square of propa-
gation constant S, only. This means that the mode propa-
gates up and down the grating with the same propagation
constant. The dispersion equation analysis is reduced to
the analysis of dispersion functions frg(p) and fryv(p):

fre(p) = cos(kodyynyg” = p)cos(koda\nay” = p)

2 2
1 \’/nlg -p \//n2g -p
o\ Tt T =
2 Vgg =P N\Tig =P

Xsin(kody\ny,” - p)sin(kodsyng,” - p), (10)

fru(p) = cos(kody \rnng - p)cos(kodz\,an p)
1<n2g2\n1g2_p n1g2Vn2g —P>
Mg \Nog nZg ang

Xsin(kodl\/nlg —p)sin(kodz\,nzg -p), (11)

where parameter p represents the square of the modal ef-
fective index:

Pg = (ﬁq/k0)2~ (12)

The values p, are found as correspondent solutions of the
dispersion Egs. (7) and (9):

f(p) =cosk,d. (13)

Since all quantities in the dispersion equation are real,
the complex conjugate p; of any solution p, will be also a
solution of Eq. (13). Thus, all eigenvalues are either real
or appear as a pair of complex conjugates.

The left-hand side of the dispersion equation contains
only grating parameters and does not depend on the inci-
dence conditions. Therefore, the analysis of function f(p)
can be performed independently of the incidence. Without
loss of generality, let n1g2<n2g2.

The analysis of the dispersion equations reveals that
there are two substantially different electromagnetic
structures. The first type of electromagnetic structure
concerns the TE polarization in all types of gratings and
the TM polarization in purely dielectric gratings (n1g
>0) or purely metallic gratings (nZg <0). A similar be-
havior in all these gratings is expected since the only dif-
ference between functions fr(p) and fry(p) is given by the
permittivity ratio; this ratio is always positive and the
sign of the second term of the dispersion equation is not
changed. For the sake of brevity, this case is referred to
here as the ordinary case. The second type of electromag-
netic structure concerns the TM polarization in a metal—
dielectric grating (n1g2<0,n2g2>0). The permittivity ra-
tio is now negative and the sign of the second term in the
dispersion equation is changed. This type of electromag-
netic structure will be referred to as the special case.

There are three different domains of solutions for p,
with respect to n1g and nzg2

1. p>n2g , )
2. n1g <p<ng,
3. p<nqyg.
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In the first domain, the ordinary case exhibits no solu-
tion since f(p) > 1 in the whole domain. In the special case,
we have fry(p) —— —oo. If n1g2+n2g2< 0, then the

p—x
metal-dielectric interface can support a plasmon mode
with

2 2
nlg n2g
o (14
g 2g

It can be shown that pj, > n2g2, flpp) > 1, and the existence
of a modal solution in the domain p> p;,; follows from the
continuity of f(p). Such mode is similar to a short-range
plasmon mode on a single thin metal layer.” Evidently, it
cannot have any analog in the ordinary case.

It is well known that a thin metal layer can support a
long-range plasmon as well.'” The corresponding grating
mode exists when f(n2g2) <0, so the distance between two
neighboring metal sheets has to be large enough.

In the second domain, the solutions of Eq. (13) are
modes of the second (dielectric in the special case) layer.
No specific difference exists in the domain considered be-
tween ordinary and special cases.

The main difference between two cases is found in the
third domain, p<ej,. First, consider the ordinary case.
Function frr(p) can be rewritten in the form

2 2 2
1 \'/n’ 1g — P \'/n 2¢ — P
fre(p) =7 ——t\| =
\Ngg =P g —P
X cos( Odl \,nlg -p+ k0d2\,n2g )

D) 2
( \/ n’lg —P V/nZg _P)
Vnz “—p ?

g —P

><cos(k0d1\,'nlg2 -p- kodzx/nng -p). (15)

Any solution p,, of the equation

kodl\/nlgz—p+k0d2\/n2g2—p=m7'r (16)

satisfies the condition |frg(p,,)| =1, since

Mo —p\°
( \/nlg -P \gg —P)
— R -
4 \/n2g2_p \/nlgz_p
2
_1( \/\"/"“1%2_" \/‘/n2g2_p) +1. (A7)
4 \”/n2g2_p \/n 1g2_p

Note, that odd m results in negative values of frg(p,,)
whereas even m gives positive values of frg(p,,). Hence,
every mode can be found between two consecutive points
pm [except for the case |frg(p,,)|=1, when two modes are
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Fig. 3. TE dispersion curve in a metal-dielectric grating.

degenerated]. The numerical example in Fig. 3 illustrates
a typical behavior of function f(p) in the ordinary case
(metal—dielectric grating and TE polarization). The grat-
ing period is 200 nm with 0.5 line/period ratio. Grating
layers are Al and air (n1g2=—25, n2g2= 1), the wavelength
is 450 nm.

An approximate modal location is determined by condi-
tion (16). The number of modes at a given value of p cor-
responds to the whole “optical thickness” of one grating
period kid;+kods. In this context, each grating mode be-
longs to the whole structure. In the limit of high mode or-
der, when k;=ky= \——p, the density of grating modes de-
pends only on the ratio d/\. This remains true in the
presence of the permittivity ratios in the function fry(p)
for the TM mode in the ordinary case.

However, the behavior of the modal solutions is quite
different in the special case. In this case, function fry(p)
is written as

2 [~ 2
frmlp) 1(\/”2g Vn/—lg —
™\P) =~ +

2 2

4 |n'1g |Vn2g -p

.
xeos(kod1\n1," = p—koda\nss” — p)

2 [ 2 2l [ 2 2
1( \/n2g g —P \/|n’1g |\,‘"n2g _P)
- 2 [ 2 2 [—2_
4 |n1g |\”n2g -pP Tlgg \1g =P

XCOS(kodl \,’nlgz —-p+ k0d2 \J’n2g2 - p) . (18)

2
|n1g2| \’/nZgZ - p)

2 [—2_
Nog NM1g =P

Similar to the previous analysis one concludes that at
least one modal solution is found between two consecutive
solutions of the equation

kodi\ny - p—koda\ny,” — p=m. (19)

The density of such solutions is less than that given by
Eq. (16). The numerical example of Fig. 4 confirms this
statement. The high frequency term k;d;+ksdy generates
modal solutions for each intersection of curve fry(p) with
horizontal line cos(k,d). The difference in the ordinary
case is that the lower-frequency term in Eq. (19) has
much larger amplitude than the high-frequency term.
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This leads to the possible separation of curve fry(p) and
line cos(k,d). When, for instance, a local maximum of
frm(p) is under line cos(k,d), there is no longer any inter-
section. At first glance, it would seem that no mode exists
in this domain. But this is not true. It was mentioned in
Ref. 6 that, similar to algebraic second-order polynomials,
in the absence of real roots two complex conjugate solu-
tions exist in the vicinity of each such extremum of fry(p).
Mathematical evidence of such solutions requires, how-
ever, a physical interpretation. This is very important for
four reasons. First, the existence of such solutions, even
though they were mentioned in Ref. 6, was then
ignored,11 and even denied”!? by other authors, who
claimed that any grating with purely real permittivities
possesses only modes with purely real values p,,. This
claim is misleading and needs to be countered. Second,
the analysis of such complex (“hidden”) modes reveals in-
teresting physical analogies. Third, these modes complete
the modal basis to the modal density given by Eq. (16). Fi-
nally, “hidden” modes must be taken into account in any
implementation of the modal method for solving diffrac-
tion problems exactly.

Table 1 represents the results of a numerical example
in which the diffraction efficiency is calculated both ac-
counting for and neglecting the hidden modes. The lamel-
lar grating of period 200 nm with 0.5 line/period ratio is
made in an Al layer of 521 nm thickness (7’L1g2=—25,nzg2
=1) on a glass substrate (nHz=2.25), the wavelength is
450 nm, the angle of incidence is 35° from the air side
(n12=1), the polarization is TM (the special case). From
Table 1 it is clear that increasing the number of evanes-
cent modes and evanescent diffraction orders considered
does not improve the convergence if the hidden modes are
neglected. Obviously, the role of hidden modes is crucial
in this example.

The present analysis is not sufficient when the line/
space ratio of the grating is very small and/or very large.
Consider, for example, the case d;>dy. Two frequencies
in formula (18) are not very different and this perturbs
the solution behavior. The modal location is no longer de-
termined by Eq. (16). A more appropriate expression of
function fp(p) is

SA\ /\\ /A\ /\\ //\\ /\xf‘\
SRR

T T T T T
-500 -400 -300 -200 -100 0
P

Fig. 4. TM dispersion curve; the grating and the incident wave
are the same as in Fig. 3.
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Table 1. Zeroth-Order TM Diffraction on a Lossless Metal-Dielectric Grating, d,/d=0.5
Complete Modal Basis Neglecting Hidden Modes
Number
of Modes Transmission Reflection Transmission Reflection
5 0.8901921475 0.1016072281 0.8901921475 0.1016072281
9 0.8765922481 0.1114728698 1.0389528710 0.1796275371
17 0.8751616505 0.1212803594 1.1484419400 0.2485328513
33 0.8735083902 0.1254448768 0.8529418663 0.3579954386
65 0.8727351564 0.1269459890 0.9426439135 0.1232907240
129 0.8724474463 0.1274520496 0.7062587589 0.0430437874
257 0.8723493545 0.1276183215 0.2521742909 0.6473278467
513 0.8723171226 0.1276723836 0.9229722058 0.1901889377
1025 0.8723067032 0.1276898787 0.7972451570 0.0396516471

2 2
1( ny, \’/nlg -P
frm(p) = A1+ 1 T
|n1g |Vn2g -

|n1g2| \//n2g2 -p

— ) sin?(kod, V’n1g2 -p)

2
Tog N1g — P

| 2
Xcosq kodg\ng,” —p+arctan| —

A typical behavior of fry(p) is shown in Fig. 5. Evi-
dently, each intersection of curve fry(p) with line cos(k,.d)
gives a mode. Since the amplitude factor in Eq. (18) is at
least unity, one mode is found between two consecutive
solutions of the equation

kods V"n2g2 — p—arctan

1 n2g2\’n1g2 -P
2

—
|n1g2| \“’n’Zg2 -p

2 2
‘nlg |\’n2g -p s
? tan(kodl\unlg —p) =mm.
Ngg N1g — P

(21)

The analysis reveals that the density of modes given by
Eq. (21) is the same as defined by Eq. (19), and it is not
sufficient for completing the modal basis. Some modes are
missing. In order to localize them, let us consider the case
kidi=mm. Then, Eq. (21) becomes

21 [ 2 \2
|n'1g |\/n2g -pP e
- ——— | (kod1\n1, —p

2 2
1( Nog NM1g =P

1+- ——
8 |n1g2| \*"n'Zg2 -p n2g2\“"n’1g -p
cos(k,d)
-mm)?= (22)

"T B
cos(koda\ng,” — p)

from which we get two complex roots:

2 2
1( Nog \ig —P

—_—
|n1g2| \“”nZgQ -pP

|n1g2|\m’2g2 -pP T
+ — tan(kodlwlg -p) . (20)

2
Nog \M1g — P

\/ . cos(k,d)
cos(kods V"nzgz -p)

2 [~ 2_
Ngg N1g —P

—

kldl = m’ﬂiJ\S

‘n1g2|\’n’2g2 -pP

2 2
Ngg \Nig —P

(23)

|n1g2| \“”n2g2 -pP

Such roots correspond to hidden modes of a new type.
They have never been mentioned before in the literature.
Similar to the hidden modes of the first type, they are
very important in diffraction analysis. This fact is illus-
trated in Table 2 where all the structure parameters are

0 o[ N TT] TVl
IR

4 e

1 1 1 !
-5000 -4000 -3000 -2000 -1000 0
p

Fig. 5. TM dispersion curve in a case of metal-dielectric grating
with line/period ratio of 0.95. All other parameters are the same
as in Fig. 3.
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Table 2. Zeroth-Order TM Diffraction on a Lossless Metal-Dielectric Grating, d,/d=0.95

Complete Modal Basis

Neglecting Hidden Modes

Number
of Modes Transmission Reflection Transmission Reflection
15 0.6572419397 0.3376533362 0.6572419397 0.3376533362
20 0.7674317175 0.2770071826 0.7248961953 0.2345484121
30 0.8048567964 0.195968401 0.7898380007 0.1902391117
50 0.792087328 0.2083842497 0.6882089302 0.1467750505
90 0.8002786777 0.199947763 0.6082492786 0.2125015272
170 0.8028587367 0.1972342546 0.3448335686 0.3976552843
330 0.8036283887 0.1964062279 0.1759741614 0.5597773657
650 0.8038538188 0.1961583539 0.2360555576 0.1168753608
1290 0.8039192353 0.1960849089 0.323986926 0.07356533296

taken the same as in the previous example of Table 1, but
the line/space ratio of the grating is 0.95. The calculated
diffraction efficiencies accounting for and neglecting the
hidden modes of the second type are presented. The den-
sity of such modes is defined by twice the optical thick-
ness of the first layer k,d;. Thus, the total modal spec-
trum in the grating considered can be represented by real
modes and hidden modes of the second type.

A quite similar description can be obtained also in the
case d;>ds.

4. NATURE OF HIDDEN MODES

Section 3 explains the important difference between the
ordinary and the special cases in the domain p<n1g2. The
two types of hidden modes identified in the special case
are the subject of this section.

The first step is to analyze the behavior of the modal
fields corresponding to p, in the modal basis. Let us start
by considering the ordinary case with the structure pa-
rameters those of Fig. 3. The modal fields ¥ (x)=E,(x)
represented in Fig. 6 demonstrate that the power in each
TE mode is essentially evenly distributed in both layers of
the grating. This confirms our conjecture that each mode
in the ordinary case pertains to the whole grating period.

Quite different is the situation in the special case. Fig-
ure 7 represents the TM modal fields of the grating hav-
ing the parameters of Fig. 3. Ratio W (x)=H,(x)/n(x) is
used rather than field H,(x) in order to demonstrate the
mode power distribution over the grating period. One can
conclude that all normal (not hidden) modes of this struc-
ture can be assigned two sets: the “dielectric” modes
whose power is essentially concentrated in the dielectric
layer, and the “metal” modes whose power is mainly in
the metal layer.

The power of a hidden mode is evenly divided between
the two layers of a period. Considering the fields of two
conjugated hidden modes ¥,(x) and V¥,(x) reveals that in
one layer their fields coincide whereas in the other layer
they are opposite in phase (see Fig. 8). Therefore, combi-
nation W,(x)+W,(x) gives rise to a dielectric mode, and
combination ¥, (x)-W¥,(x) to a metal one. Such modal be-
havior is well known in the coupled-mode theory13: When
two neighboring modes are coupled, the eigenmode field is
represented by a combination of the coupled modal fields.
Thus, the described field behavior allows the hypothesis

15— —
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Fig. 6. TE mode field distribution, modes m =17 (solid curve)
and m=18 (dashed curve). The modal fields are evenly distrib-
uted over the whole period of the grating.
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Fig. 7. TM mode field distribution, mode m=25; solid curve—

the power is located mostly in the dielectric layer—and m =26;
dashed curve—the power is located mostly in the metal layer.

that a pair of hidden modes of a grating is the result of
the coupling between a dielectric and a metal mode.

A similar behavior of the modal fields is found in the
case of a small line/space ratio. Figure 9 represents the
modal fields of the grating structure with very narrow
slits having the same parameters as in Fig. 5. One can
conclude that all nonhidden modes of this structure are
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0.0 05 1.0 15 2.0
X/A
Fig. 8. Pair of hidden modes, m=4 and m=5. The real parts of
modal fields coincide (dashed curve), whereas the imaginary
parts are in phase opposition (solid curve). Two grating periods
are represented; the metal parts are shaded.

-6 T T T 1
0.0 0.5 1.0 1.5 2.0

XIA
Fig. 9. Pair of hidden modes, m=19 and m=20. The real parts
of modal fields coincide (dashed curve), whereas the imaginary
parts are in phase opposition (solid curve). Two grating periods
are represented; the metal parts are shaded.
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Fig. 10. Diagram representing the square of propagation con-
stants p, of TE modes versus the line/period ratio d,/d (ordinary
case). The dispersion curves (dashed) are well separated and lie
between the characteristic curves determined by condition (16)
(solid curves). The grating and the incident wave are the same as
in Fig. 3.
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modes of the larger (metal) layer whereas each hidden
mode is possibly the result of the coupling between a di-
electric mode and a metal mode.

Thus, the analysis of the modal field reveals the follow-
ing difference between the ordinary and the special cases:
whereas in the ordinary case all modes are modes of the
whole period of the grating, in the special case each non-
hidden mode is either a mode of the dielectric layer or a
mode of the metal layer; hidden modes are likely to be the
result of the coupling between a dielectric and a metal
mode. Consequently, the modal constants in the ordinary
case are determined approximately by Eq. (16), whereas
in the special case the dielectric-mode propagation con-
stants are approximately determined by

kodl\e‘"mgz—f): My (24)
and the metal-mode propagation constants by

kodg\;‘“nzﬁ —p=TMy. (25)

(b)
Fig. 11. (a) Diagram representing the real part of p, of TM mode
versus the line/period ratio d;/d (the ordinary case). The disper-
sion curves can be shown by two sets of curves corresponding to
metal-layer modes and to dielectric-layer modes. At the intersec-
tion points the modes become coupled with complex p, (hidden
modes). (b) Dispersion curves determined by Egs. (24) and (25)
give the location of metal-layer modes (thick curves) and
dielectric-layer modes (thin curves).
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Table 3. Square Propagation Constants, TE Modes, d,/d=0.5

Foresti et al.

Order

Im(nlgz) =0

Re(p,)

Im(p,)

Im(n1g2)=5

Re(p,)

Im(p,)

W 30 Uk W= O

-2.05773475836
-10.8291768090
—-23.1000296642
—-30.1348947056
—-39.5715449208
-51.1365460378
—66.4798462037
—-83.5735264682

-101.124242863

=]

O O OO0 oo oo

-2.07295920390
—-10.9064861515
—23.45425222803
—-29.94214926509
-39.57503217304
-51.08525580678
—-66.44672380113
—-83.55697338848

-104.1029159990

0.13326506533
0.61670054603
2.13547169245
3.93920329606
3.15364964561
2.85889571816
2.84953454017
2.70071372434
2.69305148615

Table 4. Square Propagation Constants, TM Modes, d/d=0.5

Order

Im(nlgz) =0

Re(p,)

Im(p,)

Im(n1g2)=5

Re(p,)

Im(p,)

W 1O Uk W= O

—-1.308478221654

-3.51642358394
-18.9664152031
-30.0581582797
—44.8471143549
—-44.8471143549
—-71.2738706045
—-79.3153144201

—-106.272295666

oS O O

0
-1.78099134151

1.78099134151

0

0

0

1.303053328621
-3.52306722545
-18.9369322171
-30.0771342070
—44.3669002919
—45.3146941451

-71.1177592973039
—79.4468585835969

-106.302125881223

0.03321199859
0.04662007691
—-0.0467210468
5.05485675020
-0.66478360791
5.615201278239
5.359179449803
—-0.43594054033
5.268085003609

Table 5. Square Propagation Constants, TM Modes, d,/d=0.95

Order

Im(n,,?)=0

Re(p,)

Im(p,)

Im(n,,*) =5

Re(p,)

Im(p,)

U WN = O

4.10673104987
—-26.3852303210
-30.56469751851
-37.5226677947
—47.2978599407
-59.9275000913
—75.3462335770

NNl NeX=)

0

4.04021871457
—-26.3872352387
—-30.5534775673
-37.5319362101
—-47.3094083623
—-59.9379856586
—-75.3566621646

0.36291936209
5.00675107626
5.02327930677
5.03537770893
5.04709367058
5.04454429622
5.04599024092

19 -505.7835047673
20 -505.7835047673

-21.8341110442
21.8341110442

-499.686145533
-516.514145631

—-22.3885781040
21.29451747704

Note that total modal density m =mq+my will be the same
as in the ordinary case.

In order to check these statements the diagram repre-
senting p, versus the line/period ratio r=d;/d is calcu-
lated. In the ordinary case (see Fig. 10), the dispersion
curves are well separated and lie between the character-
istic curves determined by condition (16).

In the special case [see Fig. 11(a)] the dispersion curves
are well determined by Eqgs. (24) and (25) [Fig. 11(b)]. At
the points where two curves of different sets intersect, the
dispersion curves are split and the modes become hidden
modes with complex value of p,. This confirms our hy-

pothesis that the coupling between modes of different lay-
ers is at the origin of a hidden mode.

5. COMPLEX METAL PERMITTIVITY

Although a lossless metal was considered in the previous
analysis for the purpose of clarifying the nature of the
hidden modes, problems involving lossy metals are
treated straightforwardly without additional difficulty.
Considering the previous examples, a lossy metal is

now assumed n1g2=—25+i5. One can expect that only
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modes whose electric field penetrates deeply into the
metal part of the grating will be affected by the change of
nlgz. Table 3 presents solutions of Eq. (7) for the lossless
as well as for the lossy metal. Clearly, square effective in-
dices p, acquire an imaginary part that is of the order of
%Im(nng). This confirms the statement that all the TE
evanescent-mode fields belong to the whole period of the
grating.

Tables 4 and 5 present solutions p, of Eq. (9) for differ-
ent line/space ratios. Evidently, all square effective indi-
ces of the metal-layer modes acquire an imaginary part
that is approximately Im(n 1g2), whereas the square effec-
tive indices of dielectric-layer modes are only slightly
changed. Since each hidden mode represents a pair of
coupled modes of different kind, their propagation con-
stants’ behavior is more complicated.

6. CONCLUSION

The few evanescent TM modes of a metallic grating exhib-
iting a coupled-mode character even in presence of a loss-
less metal have been identified and shown to play a deci-
sive role in the general correctness of the original modal
method. Once the modes are taken into account, the solu-
tion to high index contrast and metallic grating problems
is obtained with high accuracy with a small number of
modes in a very short time.

All evanescent TM modes of a lamellar grating can be
separated into three sets: dielectric-layer modes, metal-
layer modes, and coupled dielectric-metal modes. This
fact eases considerably the procedure of the root search
and can be generalized to any lamellar grating.
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