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The rigorous coupled wave analysis (RCWA) is a widely used method for simulating diffraction from periodic
structures. Since its recognized formulation by Moharam et al. [J. Opt. Soc. Am. A 12, 1068 and 1077 (1995)],
there still has been a discussion about convergence problems. Those problems are more or less solved for the
diffraction from line gratings, but there remain different concurrent proposals about the convergence improve-
ment for crossed gratings. We propose to combine Popov and Neviére’s formulation of the differential method
[Light Propagation in Periodic Media (Dekker, 2003) and J. Opt. Soc. Am. A 18, 2886 (2001)] with the classical
RCWA. With a suitable choice of a normal vector field we obtain a better convergence than for the formulations
that are known from the literature. © 2007 Optical Society of America

OCIS codes: 050.0050, 050.1960, 260.0260, 260.1960.

1. INTRODUCTION

In this paper a method for convergence improvement for
the two-dimensional (2D) rigorous coupled wave analysis
(RCWA) is reported. To that end we start with a brief
overview of the history of convergence problems. In Sec-
tion 2 the topic of convergence problems for one-
dimensional (1D) gratings is reviewed. Afterward, the dif-
ferent known formulations for 2D gratings are
introduced. Section 4 presents the theoretical formulation
of the proposal of this work. It is a combination of Popov
and Neviere’s [1,2] formulation of the differential method
with the RCWA [3,4]. The key point of Popov and Nev-
iere’s formulation is the introduction of a normal vector
(NV) field. We will see that finding an appropriate NV
field is not a trivial task. In Section 5 some instructive ex-
amples are treated that reveal the problems of the vari-
ous methods. Finally, different approaches for setting up
a suitable NV field are developed. Such algorithms are re-
quired to apply the method to structures with practical
relevance.

2. CONVERGENCE PROBLEMS USING THE
RCWA

In 1995, Moharam et al. published a formulation of the
RCWA [3,4], which since that time has been an appreci-
ated and often implemented formulation of this method,
e.g., by Totzeck [5], whose implementation is the basis for
this work. Numerical problems due to antievanescent
waves and matrix inversions were definitely avoided in
this formulation. Nevertheless, it was found that the TM
polarization shows a worse convergence performance with
the number of retained Fourier modes than the TE polar-
ization. Lalanne and Morris [6] found that a replacement
of one single matrix E (the Toeplitz matrix of the dielec-
tric function) in Moharam’s formulation leads to a consid-
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erable improvement of the convergence for the TM polar-
ization. Lalanne called the new matrix A™l; it is the
inverse of the Toeplitz matrix of the reciprocal dielectric
function 1/e. In the limit of infinite Fourier series both
matrices are identical, which led Lalanne to the idea of
choosing any of them to obtain a better convergence. Li [7]
gave the theoretical explanation for the different behavior
of the two matrices for truncated Fourier series and for-
mulated three factorization rules that have to be obeyed
to avoid such problems. With the work of Lalanne and Li,
the problem of poor convergence due to a wrong treatment
of products in truncated Fourier space appearing in the
RCWA applied on line gratings has been solved. We
should note, however, that one still can face serious con-
vergence problems for metallic gratings with TM polar-
ization, as has been described in detail by Popov et al. [8].

We briefly restate Li’s factorization rules here for the
considered product D=¢€ycE, where D is the electric dis-
placement, eye the permittivity, and E the electric field.
Of course, the rules hold for any product of two functions.
We first introduce Laurent’s rule and its notation using
Toeplitz matrices:

Let a(x) and b(x) be periodic continuous functions in or-
dinary space; then the product of their truncated Fourier
series can be written as

N
c(x) =a(x)b(x) c;= E aj_kbk. (1)
k=-N

Laurent’s rule is the equivalent for Fourier series ex-
pansion to the convolution theorem for the Fourier trans-
form. The Fourier vector [c] containing all coefficients c;
may be written as a matrix product [c¢]=[a][b], where [a]
denotes the Toeplitz matrix of the Fourier vector [a]
whose entries are defined as aj,=a;_;. Now we can finally

write down Li’s rules [7]:
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1. Let D(x)=¢pe(x)E(x) and either e(x) or E(x) be con-
tinuous at some x=x,. The other quantity may be discon-
tinuous there. Then Laurent’s rule still holds and

[D]= el ][E]. (2)

2. Let D(x)=¢€pe(x)E(x) and both &(x) and E(x) be dis-
continuous at some x=x, but the product s(x)E(x) be con-
tinuous there. Then the inverse rule holds, which is given
by

[D] = el 1/e]'[E] 3)

3. Let D(x)=¢pe(x)E(x) and both &(x) and E(x) be dis-
continuous at some x=x, and the product £(x)E(x) be dis-
continuous there as well. Then the product of the two
functions in Fourier space cannot be formed by either
Laurent’s rule or the inverse rule.

Once those rules are known, it is easy to apply them to
line gratings, as the electric field can easily be decom-
posed into components perpendicular and parallel to ma-
terial boundaries. The parallel component is continuous,
as is known from Maxwell’s theory, so Laurent’s rule can
be applied. The perpendicular component of the electric
field is discontinuous, but the product ¢E |, which is equal
to the perpendicular component of the electric displace-
ment, is continuous. Therefore, the inverse rule has to be
applied. Applying Li’s rules, the convergence rate for the
TM case becomes comparable to the TE case in many
cases.

3. DIFFERENT PROPOSALS FOR
CONVERGENCE IMPROVEMENT
CONSIDERING CROSSED GRATINGS

The problem becomes more complicated when crossed
gratings are considered. For line gratings the orientation
of the lateral boundary is uniquely determined and con-
stant within the elementary cell. Usually it is chosen to
be parallel to the y axis. With this choice the orientation
of the electrical field components E, and E, relative to the
boundary takes one of the extreme cases, parallel or per-
pendicular. E, is perpendicular to the boundary, E, is par-
allel. For crossed gratings the situation is different. Any
orientation of the boundary is allowed and the field com-
ponents E, and E, are in most points of the boundary nei-
ther perpendicular nor parallel to the latter. For that rea-
son it is rather complicated to apply Li’s factorization
rules correctly.

Figure 1 depicts two illustrative kinds of structures.
For a rectangular cavity or column in the elementary cell

Ya Yy

E E

x X

Fig. 1. Relative orientation of Cartesian field components and
boundaries for two example structures.
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there are only such points along the boundary where the
field components are either perpendicular or parallel. But
even in this case, where only both extreme cases of the
relative orientations appear, it is not trivial to apply Li’s
factorization rules in Fourier space, where the informa-
tion about relative orientations in ordinary space is not
manifest. However, the RCWA is formulated in Fourier
space. For a cylindrical cavity or column, all intermediate
states of relative orientations between parallel and per-
pendicular appear. Looking at this example one has to
recognize that no descriptive understanding of how to ap-
ply Li’s rules in Fourier space is possible. Both example
structures show that an obeyance to Li’s rule cannot be
achieved by a simple adaptation of the equations in Fou-
rier space.

Lalanne [9] proposes an obvious way to make the best
out of this dilemma. He just uses a weighted average of
the matrices E and A~! ([¢] and [1/¢] ! using Li’s nota-
tion), which is a change that is extremely easy to imple-
ment. This method tries to minimize the length of bound-
ary, where Li’s rules are violated.

Li [10] presents a reformulation of the theory in much
greater generality, assuming nonorthogonal coordinate
systems. In his derivation he uses a not necessarily rect-
angular grid and approximates the boundary by zigzag
lines from this grid. By doing so, he constructs two new
matrices |[¢]| and [|e]l, which are block Toeplitz matrices
containing a mixture of Laurent’s rule in one direction
and the inverse rule in the other direction. Speaking in a
very descriptive manner, this procedure is a step-by-step
transition to Fourier space that allows it to obey Li’s
rules. Li’s proposal for convergence improvement works
very well for quadrangles, but for structures with curved
boundaries or boundaries that are oblique with respect to
the chosen grid, it suffers from the approximation that
the boundary has to be described as a zigzag line. The
shape of the boundary can be approximated that way with
arbitrary accuracy, but its local orientation is in most
points erroneous. Moreover, the length of the zigzag
boundary never converges to the length of the smooth
boundary, regardless of the level of refinement.

The described problem is similar to the staircase ap-
proximation of which the RCWA makes inherent use.
Popov et al. [11] investigated the problem in detail consid-
ering 1D gratings with oblique facets, such as trapezoidal
or blaze gratings. They showed that especially for metal-
lic gratings in TM polarization, the convergence is very
bad, which they ascribed to the appearance of field en-
hancements at the edges of the staircase boundary, which
do not disappear with successive increase of the number
of slices. Considering 1D problems with oblique facets,
one cannot completely avoid edges. As Popov et al. [11]
showed, it is possible to use a correct normal vector field
for a decomposition of the electric field, but the material
boundaries remain staircaselike unless one uses the dif-
ferential method. In contrast to that, for 2D gratings with
perpendicular sidewalls the shape as well as the orienta-
tion of the boundary curve can be modeled with arbitrary
accuracy using the RCWA, which is described in the fol-
lowing.

Popov and Neviere [1,2] presented a reformulation of
the differential method where Li’s rules are obeyed, intro-
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ducing an NV field. They call this technique fast Fourier
factorization (FFF). In this formulation they do the most
obvious thing to comply with Li’s factorization rules. They
perform a decomposition of the fields in ordinary space
into components perpendicular and parallel to the bound-
ary in any point. To this end they introduce an NV at each
boundary point and decompose the electric fields into a
parallel and perpendicular component. Afterward, they
take the full information about the orientation of the
boundary over to Fourier space by considering the Fourier
series of the NV field. This step, however, requires an ex-
tension of the NV onto the whole unit cell, even to those
locations where the permittivity is continuous. By this
method they manage to fulfill Li’s factorization rules in
Fourier space.

In Section 4 we present a proposal for the improvement
of the convergence of the RCWA applied to crossed grat-
ings that adopts Popov and Neviere’s method to fulfill Li’s
factorization rules. Considering smooth structures such
as sinusoidal gratings, it is certainly the best idea to
choose the differential method instead of the RCWA. But
if one wants to model structures such as cylindrical or el-
liptical cylindrical holes, the RCWA with the convergence
improvement presented here seems to be best suited.

4. THEORETICAL FORMULATION OF THE
PROPOSED METHOD

The following considerations are presented following the
terminology of Moharam et al. [3,4]. Sometimes, for better
understanding, we refer to Popov and Neviere or Li, using
their notation at first, then transform it to a consistent
formulation. We adopt the coordinate system of Moharam
et al., too, where the sample surface is lying in the xy
plane, the z axis pointing toward the sample substrate.

We propose to combine Popov and Neviere’s [1,2]
method to fulfill Li’s factorization rules with the classical
formulation of the RCWA [3,4]. The latter makes use of
the time harmonic Maxwell curl equations for nonmag-
netic materials. The mentioned convergence problems
arise only from the equation that contains the electric dis-
placement D, i.e.,

VX Hy=iwDy, (4)

where Hg and D, are the magnetic field and electric dis-
placement in the grating region and i is the imaginary
unit. This equation can be found in [3] within Eq. (56).
There the D field is replaced using the material equation
D=¢ye(x)E, which is allowed in this simple manner only
in ordinary space, but not in Fourier space. The fields in
Eq. (4) are then replaced in [3] by their Fourier series ac-
cording to

Eg= > [S,(2)x +S,,(2)y +S,,(2)z]
J

Xexp[— L(kJij + ky]y)]’

e\ 12
H,=- i(;TO) 2 [U2)x+ U, (2)y + U,j(2)z]
o/ 7

Xexp[-i(kx +kyy)]. (5)

The discrete k-vector elements k,; and k,; are determined
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from Floquet’s theorem. Performing this replacement Mo-
haram et al. [3] set up a matrix equation in Fourier space
(we exchange the order of the x and y components):

JU,

oz' -KK, K -E[[S,

o R P 15
oz

where z'=kyz is a normalized z coordinate, E is the
Toeplitz matrix of the relative permittivity (i.e., [¢] using
Li’s notation), and K, and K, are diagonal matrices with
the entries K, ;=k,j/ky and K, j=k,;/k,. This equation
corresponds to the third and fourth lines of Eq. (57) in [3].
The first two lines can be derived in a similar manner us-
ing the other Maxwell curl equation. We omit these lines
here as they do not contain the electric displacement and
thus do not require the application of Li’s rules. Note,
however, that the mentioned Eq. (57) in [3] is a formula-
tion for 1D gratings in conical mount. The extension to 2D
gratings can be easily achieved by replacing the k&, com-
ponent by the discrete k,; and by replacing simple
Toeplitz matrices, by block Toeplitz matrices with Toeplitz
blocks (BTTB). The vectors of Fourier coefficients become
matrices, which have to be reshaped to vectors using the
same sorting scheme as for setting up the BTTB matrices.

Looking at the right-hand side of Eq. (6) one recognizes
that Laurent’s rule has been applied for all the crucial
products, which are denoted by ES, , here. Assuming ar-
bitrary orientation of a boundary, this clearly violates Li’s
rules.

Popov and Neviere set up a kind of generalized mate-
rial equation in Fourier space that they need for the re-
formulation of the differential method. In [1] this equa-
tion is denoted by (IX.11), which we now reproduce
assuming the z component of the NV N,=0:

[D,]={le] - AINITHE,] - {AIN.N, [} E, ],

[D,]={le] - AIN;I}E,] - {AIN,N,H[E.], (7

where A=[e]-[1/¢]! and N,, N, are the x and y compo-
nent, respectively, of the NV of the material boundary.
The derivation of Eq. (7) presented in [1] is straightfor-
ward. A decomposition of the fields is performed in ordi-
nary space. The parallel and perpendicular components
are transformed to Fourier space, applying the first and
the second of Li’s rules, i.e., Egs. (2) and (3), respectively.

Now we just have to replace all the products of the form
ES,, in Eq. (6) using Eq. (7). To obtain a consistent nota-
tion we discard Popov and Neviere’s bracket notation, de-
note the Fourier vector of the electric field [E] by S, and
denote the Toeplitz matrix of the dielectric constant [[&] by
E. Furthermore, we accept the above defined matrix A
and introduce the abbreviation [N,N,]=N,, (similar for
other combination of indices x and y). Finally, we obtain

OUx -K.K, + AN,, Kf, -E +AN,, S,

0z’ = i

ou, E-K -AN, KK,-AN, || S,

o0z’ & (8)
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This equation has to be used instead of Eq. (57) (lines 3
and 4) in [3]. It is equivalent to the last two equations of
(IX.28) of [1]. Setting A=0, we recover the original formu-
lation of Moharam et al., i.e., Eq. (6). The formulation of
Li can be obtained by replacing E-AN,, by [el, E
-AN,, by [le]l, and AN,, by zero.

We can try to understand the relationship between the
known formulations and the presented one. Moharam
and co-workers’ [3] formulation ignores Li’s rules, which
can be expressed by the assumption A=0 as mentioned in
the previous paragraph. Lalanne and Morris’s [6] formu-
lation for line gratings in conical mountings can be de-
rived from Eq. (8) using N=[1,0] or N=[0,1] if the grat-
ing rules are parallel to the y or x axis, respectively. Li’s
[10] formulation for 2D gratings, however, cannot easily
be derived from Eq. (8). It can be understood as a gener-
alization of the correct 1D formulation to 2D gratings,
which can only be achieved by introducing zigzag bound-
ary curves whose facets are parallel to the coordinate
axes. Thus the coupling terms AN, in Eq. (8) become zero
and the terms E-AN,, and E-AN,, are replaced by the
results of a step-by-step transition to Fourier space. This
transition assumes a correct NV for each of the two Fou-
rier transforms (with respect to x and y) and thus treats
the problem correctly. This is, however, possible only by
the restriction to zigzag lines, which leads to a cancella-
tion of the coupling terms.

5. SOME INSTRUCTIVE EXAMPLES

The theoretical formulation presented in Section 4 is only
a first step for our work. Knowing the work of Popov and

-K,K, - Asin acos a

" | Iellcos® a + [1/6] " sin® a - K>

To conform with the notation of 1D gratings, we define TE
as the polarization, where the electric field is parallel to
the grooves and TM where it is perpendicular.

It is instructive to look at the case a=90°, where the
matrix G reduces to

G

— By Kﬁ%_ €
K, [[]]]’ 1)

TVl -K: KK,

i.e., the correct formulation for 1D gratings by Lalanne
and Morris [6]. Moreover, we restrict ourselves to in-plane
incidence, where K, =0. In this case, for TE polarization,
it is 8,=U, =0, and we obtain from Egs. (8) and (12)

au,
— = (K2 -[e]S,, (13)

whereas for TM it is S,=U,=0 and we have

Ju,
— =[1/]'S,. (14)
0z

Hence, we recover the correct formulations for 1D grat-
ings, as given by Eqgs. (IX.30) and (IX.31) from [1]. We
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Neviere [1,2], it is quite obvious to apply the method of
the NV fields not only to the differential method but also
to the RCWA of crossed gratings. A second important step
consists in setting up a proper NV field. In this section
some examples will be treated, where setting up the NV
field is either trivial or, at least, possible by descriptive
considerations. The purpose of the following examples is
to get a better understanding why the method leads to a
better convergence than others and from which problems
other formulations suffer. In Section 6, strategies for au-
tomatic generation of NV fields are developed and inves-
tigated. Without such strategies the method is less useful
for practical purposes.

A. Tilted Line Grating

The most simple yet the most instructive example is a 1D
binary line grating, which is modeled as a 2D grating
with the groove direction within the unit cell tilted by a
certain angle a as shown in Fig. 2. Since all material
boundaries are parallel, the NV field can be chosen to be

the constant field:
—-sin «
N= . 9)
cos «

Hence its Fourier series has only one single nonvanishing
component,

[Nx]k =-sin aakO’ [Ny]k =Cos a6k05 (10)

and the matrix G of Eq. (8) becomes

Kz —[elsin? a - [1/e] ! cos? «

11
KK, + A sin a cos @ (11)

[

should note, however, that for this case the formulation of
Li also yields the correct 1D limit. Yet, this is no longer
true in the case of the tilted grating.

To see that the matrix G correctly describes the tilted
line grating, we decompose the electric field vector into
components Sy and Sy, which are tangential and normal
to the grooves, respectively. The relationship to the Car-
tesian components is simply given by a rotation:

Sr cos « sina || S,
= . . (15)

Sy -sina  cosa|S,
Similarly, we can construct Uy, Uy, Ky, and Ky. In these
quantitites, the equations have to be structurally the

same as for a grating in Cartesian coordinates with «
=90°. The same also holds for a=0°, where G reads

-KK, K2 - [1/e]!
G =
[e]- K2 KK,
In this case, the grooves are parallel to the x axis, and S,

is the normal component and S, the parallel component.
Hence, in the new quantitities the matrix G should take

(16)
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Fig. 2. Tilted line grating modeled as a 2D structure.

the same form as in Eq. (16), with K, replaced by K7 and
K, by Ky, and Eq. (8) now becomes a matrix equation for
UT, UN, ST, and SN:

Uy
o | [-KiKy  KE-[1el ][ S, .
Uy | | [e]-K% KKy Sy |’ an
0z’

To switch back to Cartesian coordinates, we use relation
Eq. (15) and obtain

JU,

0z’ cos —sina || - K7Ky K% —[1/e]!
U, | |sina  cosa [|[s]-K% KKy
0z’

[ cos sin a] [Sx}
x| . (18)
-sina  cosa|S,
Performing the matrix multiplications and replacing Ky
and Kr by their respective Cartesian components, we re-
cover the matrix G as given by Eq. (11). Hence, the matrix
G in Eq. (11) can be obtained via a similarity transforma-
tion from the conical 1D equations with appropriate ap-
plication of the inverse rule and therefore correctly de-
scribes the tilted line grating in 2D Cartesian
coordinates.

In Fig. 3 we show the convergence curves for the trans-
mitted zeroth order for a tilted grating with tilt angle a
=45°. The refractive index is n=1.5, and we assume nor-
mal incidence from the substrate. The grating period is
2\, the width of the grooves is \, and the grating depth is
N (2(n-1)). In each graph we plot the diffraction effi-
ciency as a function of the truncation order M using the
three considered formulations: Moharam’s original formu-
lation, Li’s formulation, and the formulation using the NV
field. As usual the Fourier series run from —M---M, which
yields 2M +1 Fourier coefficients for each of the two direc-
tions of periodic continuation or (2M+1)2 coefficients in
total. Moreover, we have included the exact results from
1D computations with a sufficiently high number of Fou-
rier modes, such that convergence was ensured.

The results are quite striking. For TM polarization Mo-
haram’s formulation yields slow convergence, which is
due to the well known fact that it does not make use of the
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inverse Laurent rule. For TE polarization Moharam’s for-
mulation converges fast, as in this case no inverse rule is
needed. This is in complete analogy to the nontilted case.
Li’s formulation, in contrast, leads to rapid convergence
for the TM case but to a poor one for the TE case! It seems
clear that Moharam’s formulation outperforms Li’s one
for the TE case, as Moharam’s formulation uses Laurent’s
rule, which is correct, whereas Li’s formulation mixes up
Laurent’s rule with the inverse rule without need. It is
not clear, however, why this mixing of the two rules does
not worsen the performance of Li’s method for the TM
case. The NV formulation obeys Li’s rules for both cases
and thus always shows the best convergence behavior.

Summarizing, we have the following findings: Mo-
haram’s formulation leads to poor convergence for the TM
case, whereas Li’s formulation does so for the TE case. In
contrast, the NV formulation yields rapid convergence for
both polarizations.

B. Checkerboard Grating

As a second example we consider the checkerboard grat-
ing corresponding to example 1 of Li [10]. For convenience
we repeat the grating data. The length of a square is
1.25)\, the grating material is characterized by n=1.5, and
the thickness of the squares is 2A=\. Incidence is in nor-
mal direction from the substrate, and the polarization is
parallel to one side of the squares.

Tilted line grating, TE pol.

0.08
..... O rrree e O O O
0.0781 1
0.076 iy
0.074} ]
™ 0.072 =TT
0.07} P 1
=  [ee= Moharam
0.068} s . H
7 ~=-=Li
0066 7 ° NV
- —1D true
0.064 > : ; i
4 6 8 10 12
truncation order
(a)
Tilted line grating, TM pol.
0.11 " " u L
------- Moharam
0.105} ==L
o NV
01 . — 1D true
-
R ]
o.o0f T, ]
0.085; e
0.08 . : 7 '
4 6 8 10 12

truncation order
(b)

Fig. 3. Convergence curves for tilted line grating.
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There are three possible unit cells in Li’s paper, from
which one uses an oblique-angled coordinate system,
which will not be considered in this paper. Instead, we re-
strict ourselves to unit cell A [see Fig. 4(a)] and unit cell B
[see Fig. 4(b) and 4(c)]. In unit cell A all material bound-
aries are parallel to the coordinate axes, whereas unit cell
B is tilted by 45° with respect to unit cell A, which means
that all material boundaries are tilted with respect to the
coordinate system defined by the borders of unit cell A. In
addition, it is smaller than unit cell A, which is expected
to yield better convergence.

For the line grating the quest of finding an NV field
was trivial, since the constant field did the job perfectly;
however, for the checkerboard geometry, an appropriate

(b)

(c)
Fig. 4. Different unit cells for a checkerboard grating and dif-
ferent ways to set up the NV field.
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Checker cell A, Oth order

q
0.168¢ ——NV Schwarz Christoffel ||
© NV piecewise constant
0.166 . 3 z E
4 6 8 10 12

truncation order

(a)

Checker cell A, 1st order

0.13 T
—y
0.1298¢ ——NV Schwarz Christoffel |
0.129 6(! © NV piecewise constant ||

0.1294

—
UDJ 0.1292¢
0.129}
0.1288¢
0.1286

0.1284 . . : -
4 6 8 10 12
truncation order

(b)

Fig. 5. Convergence curves for checkerboard cell A.

continuation of the NV field is no longer obvious. The
most simple way to set up a suitable NV field is to intro-
duce lines of discontinuties along the diagonals of the
squares [see Fig. 4(c)]. This field describes the NV cor-
rectly at the boundaries and is pretty smooth in the close
neighborhood of the latter, which seems to be an advan-
tage. The lines of discontinuties, however, seem to be a
disadvantage, as many Fourier coefficients are needed to
represent them correctly in Fourier space. So we cannot
be sure whether this NV field is ideal or not.

We try a different way to set up an NV field, which will
be described in Subsection 6.A. This method makes use of
the Schwarz—Christoffel transformation. The resulting
NV field is depicted in Figs. 4(a) and 4(b) for the two pos-
sible unit cells. Let us state that the NV fields avoid lines
of discontinuities but accept a few point singularities,
some of them even lying on the material boundaries.

Figures 5 and 6 show the convergence of the (0,0) [Figs.
5(a) and 6(a)] and (0,-1) [Figs. 5(b) and 6(b)] transmitted
orders for units cells A and B, respectively, using Li’s for-
mulation and the NV formulation. For unit cell A both for-
mulations show a similar convergence behavior. In con-
trast, for unit cell B the NV formulation using any of the
described NV fields converges much more rapidly than
Li’s formulation. The results for the two different NV
fields are almost identical. Moreover, we observe that the
convergence of the NV formulation for unit cell B is faster
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Checker cell B, Oth order
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Fig. 6. Convergence curves for checkerboard cell B.

than for unit cell A, as is expected from its smaller size.
However, this is not the case for Li’s formulation, where
the convergence for unit cell B is even worse than for unit
cell A. This is at odds with the previously stated expecta-
tion and Li [10] already took notice of this difference and
attributed it to the difference in the Fourier transforms.
Whereas for unit cell A one can use analytic expressions,
this is not the case for unit cell B, where one has to dis-
cretize the dielectric constant and perform the fast Fou-
rier transform (FFT) numerically. However, we do not
agree with this explanation, for we use the numerical
FFTs for all three formulations and for both unit cells. In-
stead, we argue that the slower convergence for unit cell
B rather comes from the fact that the tilted material
boundaries are approximated by zigzag lines in the same
manner as for the tilted line grating. In this case the for-
mulation of Li leads to slow convergence whenever the po-
larization is parallel to this boundary. Since, for unit cell
B, only half of the boundaries are either parallel or or-
thogonal to the incident polarization, the convergence is
not as bad as in the case for the tilted line grating, where
all the boundaries are parallel to the incident polarization
in the TE case. As mentioned before, in unit cell A all the
material boundaries are parallel to the coordinates, and
here Li’s formulation is perfectly appropriate.
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6. PRACTICAL CONSIDERATIONS ABOUT
SETTING UP THE NORMAL VECTOR

As demonstrated in Section 5, a considerable improve-
ment of convergence with respect to the formulations
known from the literature can be achieved. Considering
the example of the checkerboard grating, we had to rec-
ognize that for most structures of practical interest it is
not possible to set up an NV field without any discontinui-
tes or singularities. One has the choice between accepting
lines of discontinuities, which ought to be located the fur-
thest away from the material boundaries, and point sin-
gularities, which are lying on the boundaries. There is no
clearly defined rule which of the two choices is the better
one.

In the following, two approaches for setting up NV
fields for certain classes of structures are introduced.
Both avoid lines of discontinuities and accept point singu-
larities, even on the material boundaries, but both lead to
better convergence behavior than the previous formula-
tions of the RCWA. They are compared to the competing
approach of accepting lines of discontinuities far away
from the material boundaries. We cannot find a clear an-
swer regarding which approach is the better one. The fol-
lowing algorithms, however, can be applied to a certain
class of more or less arbitrary structures and thus are
suitable for practical use. It is not obvious how the com-
peting approach with lines of discontinuities can be real-
ized in comparable algorithms.

A. Use of the Schwarz—Christoffel Transformation for
Polygonial Structures

One possible way, which is particularly suited for polygo-
nial geometries, is based on the use of the Schwarz—
Christoffel transformation and will be outlined in the fol-
lowing. If the material boundary were a circle, as shown
in Fig. 7(a), then a possible NV field would be a radial vec-
tor field, which would have just one singular point at the
center but would be smooth at all other points. If we con-
sider a polar coordinate system with its origin at the cen-
ter of the circle, then the material boundary lies on r
=const. coordinate lines, whereas the NV field is always
tangential to the ¢=const. coordinate lines. If we now de-
form the material boundary, say, to an ellipse, the new co-
ordinate field could be found by choosing an appropriate
conformal coordinate transform, which transforms the
circle into the ellipse. Since conformal transformations
conserve angles, any orthogonal coordinate system will be
transformed into another orthogonal system, and there-
fore the tangent vectors to the transformed ¢’=const.
lines represent a valid NV field for the new geometry.

In the case of a polygonial material boundary, the NV
field for the interior can be found by the Schwarz—
Christoffel transformation, which transforms the unit
disk into an area with an arbitrary polygonial boundary.
Originally, the Schwarz—Christoffel transformation is a
mapping of the upper complex half-plane into the interior
of a polygon, but there exist other formulations with dif-
ferent preimages. Depending on the grating structure,
one formulation might be advantageous over the other.
For the checkerboard structure, we use the unit circle. To
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this end we identify the y axis of the unit cell with the
imaginary axis of the complex plane.

The coordinate lines after mapping the unit circle into
the interior square of unit cell B are shown in Fig. 8. The
NV field is represented by the vector tangent to the trans-
formed coordinate lines ¢’ =const. Thus, the NV field ob-
tained by this procedure can then easily be extended to
the remaining unit cell by appropriately shifting it into
the four corners. The complete NV field has already been
considered in Subsection 5.B and is depicted in Fig. 4(b)
[and in Fig. 4(a) as well]. Note that the field is continuous
everywhere except at nine points, namely, the center and
the four corners of the unit cell and the four corners of the
tilted square. The former lie in the homogeneous regions

(b)

(c)
Fig. 7. Most obvious NV fields for simple geometric objects in
the unit cell.
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Fig. 8. Coordinate lines obtained by Schwarz—Christoffel
transformation.

and represent source or drain points, whereas the latter
are saddle points. To generate these figures we used a
freely available MATLAB implementation of the Schwarz—
Christoffel transformation [12].

It should be mentioned that although it seems to be a
very convenient way to use the Schwarz—Christoffel
transformation to obtain smooth NV fields for a given
polygonial grating geometry, the modeling still can be-
come quite awkward for more complicated grating struc-
tures. Moreover, for a finely discretized unit cell, the set-
ting up of the NV field at each point can become a very
time-consuming process, which significantly stretches the
computation time of the complete solution of the diffrac-
tion problem. One advantage, however, is that for a se-
quence of computations for a range of wavelengths, inci-
dence angles, or height variations, the NV field has to be
computed only once, since it only depends on the grating
geometry in the xy plane.

B. Use of an Electrostatic Model for Hole or Pillar
Arrays

As the Schwarz—Christoffel transformation can only be
applied to grating geometries with polygonial material
boundaries, for curved smooth boundaries, a different
way has to be found to set up the NV field. Particularly
simple but widely used examples are gratings consisting
of a single convex cavity (or column) within the elemen-
tary cell, i.e., they possess a simply connected region of
one material surrounded by an ambient medium. Ex-
amples are arrays of circular or elliptical pillars or holes
with arbitrary orientation.

Considering such structures, we again have two possi-
bilities, either accept lines of discontinuities away from
the boundaries or accept point singularities on the bound-
aries. The first possibility is depicted in Fig. 7 for three
structures: a circle (a), a tilted ellipse (b), and a square (c).
For such simple structures the choice of an NV field is
quite obvious. For the circle, a field that points in a radial
direction throughout the whole elementary cell is chosen.
For the ellipse, finding the NV field is a little bit more
complicated, but still straightforward. One can look up in
standard mathematics textbooks, e.g., [13], the elliptical
cylindrical coordinate system, where the lines of constant
coordinates form families of confocal ellipses and confocal
hyperbolas, respectively. The field lines of the NV field
shown in Fig. 7(b) form this family of hyperbolas. For the
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(b)

(c)
Fig. 9. Normal vector fields set up using the electrostatic model
algorithm for three example structures.

square, the NV field can be set up similarly to the check-
erboard grating by introducing lines of discontinuities
along the diagonals of the square and choosing a constant
field in the resulting areas, see Fig. 7(c).

For computing diffraction from more or less arbitrary
structures it is desirable to find an algorithm that com-
putes the NV field automatically. We developed such an
algorithm, which in contrast to the NV fields described
previously avoids line discontinuities but accepts singu-
larities on the material boundaries. The algorithm is
based on two electrostatic models applied to the convex
cavity. Each of the two models is connected to one of two
steps of the computation of the NV field.

In the first step the cavity in the elementary cell is re-
garded as a perfectly conducting object in an infinitely ex-
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panded plate capacitor. We choose the positive plate on
the left side, the negative one on the right side. Poisson’s
equation is solved for that setting. The resulting electrical
field is normalized and accepted as the sought-after NV
field outside the cavity. At two points, this NV field
changes its orientation from inward to outward. Those
two points are looked for as they are needed for the sec-
ond step of the computation. In some cases they are given
by symmetry considerations. For the second step, the
boundary curve is cut into two pieces at those two points,
and now the cavity itself is treated as a plate capacitor
with curved plates. Again, Poisson’s equation is solved,
and the resulting electric field is normalized and accepted
as the NV field, this time inside the cavity.

We applied the described algorithm to the same three
structures as considered previously in this subsection, a
circle, a tilted ellipse, and a square. We used the finite el-
ement method for solving Poisson’s equation. The result-
ing NV fields are depicted in Fig. 9. As can easily be seen,
there are always two singular points of the NV field lying
on the boundary. It seems to be a fundamental limitation
of the problem that one cannot get rid of these singulari-
ties unless one accepts complete lines of discontinuities.

We simulated diffraction of light with normal incidence
from arrays of the described structures using the same
three formulations of the RCWA. The simulation data are
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Fig. 10. Convergence curves for an array of circles.
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again closely related to Li’s [10] paper about convergence
improvement using a quadrangular grid. The structures
were supposed to be aerial cavities in a metallic layer
with a refractive index of 1.75+1.5¢ and a thickness of
50 nm. The substrate was chosen to be glass with a re-
fractive index of 1.5. The wavelength was 500 nm, the pe-
riod in the x and y directions 1000 nm each. The side
length of the square and the diameter of the circle were
500 nm, the semiaxes of the ellipse 1000 and 500 nm.

Figure 10 shows the diffraction efficiencies of the re-
flected zeroth order for the array of circles as a function of
the truncation order M. In Fig. 10(a) diagonal polariza-
tion [E,,E,]=[1,1] of the incident light is assumed,
whereas the polarization in Fig. 10(b) is x polarization
[E,,E,]=[1,0]. As can be seen, the NV method converges
the fastest for both polarizations. The two choices of the
NV field do not show considerable differences in the re-
sulting convergence curves; the radial field is slightly bet-
ter.

In Fig. 11 the diffraction efficiencies of the array of ob-
lique ellipses can be seen. This time the two mutually or-
thogonal diagonal polarizations [E,,E,]=[1,1] and
[E,,E,]=[1,-1] are compared to each other. This compari-
son is reasonable for only the ellipse array, as for the two
other examples both polarizations lead to identical results
due to the symmetry. The oblique ellipse somewhat re-
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Fig. 11. Convergence curves for an array of oblique ellipses.
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Fig. 12. Convergence curves for an array of squares.

sembles an oblique groove. Enlarging the semimajor axis
toward infinity transforms the ellipse array into a tilted
line grating. Thus it is reasonable to investigate the diag-
onal polarizations, which can be considered as “mainly
TE” and “mainly TM.” What do we mean by these names?
For the mainly TE polarization the tangential component
of the electric field is larger than the normal component
for a maximum fraction of the boundary length; for the
mainly TM polarization the opposite is true. The mainly
TE polarization is a true TE polarization for the limit of
an infinitely long semimajor axis; the same is true for the
mainly TM polarization. Thus it is no surprise that the
convergence curves show a similar behavior as those of
the tilted line grating. For the mainly TE polarization the
old formulation of Moharam et al. converges better than
Li’s formulation. For the mainly TM polarization Li’s for-
mulation works better than the old one. For both polar-
izations, the NV method shows the best convergence
properties of the three. For the mainly TE polarizations
the two different NV fields lead to a considerable differ-
ence in the resulting curves, but it is hard to decide which
one is better. For the mainly TM polarization, however,
both NV fields lead to virtually identical results.

In Fig. 12 the convergence behavior of the methods is
investigated for an array of squares. Again, diagonal and
x polarization are compared as in the case of the circle ar-
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ray. It is no surprise that Li’s method works best for this
special structure, as it is perfectly adapted to its symme-
try. As can be seen in Fig. 12(a), the NV method with the
NV field from the electrostatic model algorithm is rather
poor, at least for this particular polarization. Obviously,
the point singularities are more harmful in this case than
in others. The piecewise constant NV field, which is de-
noted by xy, however, leads to almost identical results as
Li’s method. This is also true for x-polarization, which is
shown in Fig. 12(b). Here, in contrast, the NV field from
the electrostatic model algorithm leads to the best conver-
gence.

7. CONCLUSION

We combined Popov and Neviere’s [1,2] formulation of the
differential method with the recognized formulation of
the RCWA [3,4] for crossed gratings. Thus we achieved
similar or better convergence than proposals for conver-
gence improvement, which are known from the literature.
This method, however, requires introducing an NV field,
which has to be defined over the whole grating unit cell,
although it is strictly speaking used only at the material
boundaries, where it serves to decompose the electric and
magnetic transverse fields into tangential and normal
components with respect to the boundaries in order to cor-
rectly apply Li’s factorization rules for truncated Fourier
series.

Unfortunately, there is no unique way to set up the NV
field for any refractive index distribution in the elemen-
tary cell, and with improper choices the improvement in
the convergence rate may be spoiled. We proposed some
general approaches to how the NV ought to be set up for
certain classes of structures. We will continue our efforts
to find more general algorithms for setting up NV fields.
Concave cavities or multiply connected regions such as
ring systems could be the next targets of interest.

Although we demonstrated a better convergence for
some structures than the previous formulations, we have
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to state that our method is not yet applicable to arbitrary
structures. There is still a need to generalize the ap-
proaches for setting up the NV fields for arbitrary struc-
tures.
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